首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm?2 and current density of 52 µA cm?2, which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.  相似文献   

2.
The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kΩ and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m?2 for RVC to 568 mW m?2 for graphite with biofilm grown at closed circuit.  相似文献   

3.
Development of highly efficient anode is critical for enhancing the power output of microbial fuel cells (MFCs). The aim of this work is to investigate whether modification of carbon paper (CP) anode with graphene (GR) via layer-by-layer assembly technique is an effective approach to promote the electricity generation and methyl orange removal in MFCs. Using cyclic voltammetry and electrochemical impedance spectroscopy, the GR/CP electrode exhibited better electrochemical behavior. Scanning electron microscopy results revealed that the surface roughness of GR/CP increased, which was favorable for more bacteria to attach to the anode surface. The MFCs equipped with GR/CP anode achieved a stable maximum power density of 368 mW m?2 under 1,000 Ω external resistance and a start time for the initial maximum voltage of 180 h, which were, respectively, 51 % higher and 31 % shorter than the corresponding values of the MFCs with blank anode. The anode and cathode polarization curves revealed negligible difference in cathode potentials but obviously difference in anode potentials, indicating that the GR-modified anode other than the cathode was responsible for the performance improvement of MFC. Meanwhile, compared with MFCs with blank anode, 11 % higher decolorization efficiency and 16 % higher the chemical oxygen demand removal rate were achieved in MFC with GR-modified anode during electricity generation. This study might provide an effective way to modify the anode for enhanced electricity generation and efficient removal of azo dye in MFCs.  相似文献   

4.
Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148?±?8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20?±?13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55?±?15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73?±?13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor.  相似文献   

5.
Power densities and oxidation–reduction potentials (ORPs) of MFCs containing a pure culture of Shewanella oneidensis MR‐1 were compared to mixed cultures (wastewater inoculum) in cube shaped, 1‐, 2‐, and 3‐bottle batch‐fed MFC reactor configurations. The reactor architecture influenced the relative power produced by the different inocula, with the mixed culture generating 68–480% more power than MR‐1 in each MFC configuration. The mixed culture produced the maximum power density of 858 ± 9 mW m?2 in the cubic MFC, while MR‐1 produced 148 ± 20 mW m?2. The higher power by the mixed culture was primarily a result of lower internal resistances than those produced by the pure culture. Power was a direct function of ohmic resistance for the mixed culture, but not for strain MR‐1. ORP of the anode compartment varied with reactor configuration and inoculum, and it was always negative during maximum power production but it did not vary in proportion to power output. The ORP varied primarily at the end of the cycle when substrate was depleted, with a change from a reductive environment during maximum power production (approximately ?175 mV for mixed and approximately ?210 mV for MR‐1 in cubic MFCs), to an oxidative environment at the end of the batch cycle (~250 mV for mixed and ~300 mV for MR‐1). Mixed cultures produced more power than MR‐1 MFCs even though their redox potential was less negative. These results demonstrate that differences between power densities produced by pure and mixed cultures depend on the MFC architecture. Biotechnol. Bioeng. 2010; 105: 489–498. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
This study determined the influence of substrate degradation on power generation in microbial fuel cells (MFCs) and microbial community selection on the anode. Air cathode MFCs were fed synthetic medium containing different substrates (acetate, glucose and starch) using primary clarifier sewage as source of electroactive bacteria. The complexity of the substrate affected the MFC performance both for power generation and COD removal. Power output decreased with an increase in substrate complexity from 99 ± 2 mW m−2 for acetate to 4 ± 2 mW m−2 for starch. The organic matter removal and coulombic efficiency (CE) of MFCs with acetate and glucose (82% of COD removal and 26% CE) were greater than MFCs using starch (60% of COD removal and 19% of CE). The combined hydrolysis–fermentation rate obtained (0.0024 h−1) was considerably lower than the fermentation rate (0.018 h−1), indicating that hydrolysis of complex compounds limits current output over fermentation. Statistical analysis of microbial community fingerprints, developed on the anode, showed that microbial communities were enriched according to the type of substrate used. Microbial communities producing high power outputs (fed acetate) clustered separately from bacterial communities producing low power outputs (fed complex compounds).  相似文献   

7.
Performances of microbial fuel cells (MFCs) were studied at 5–10 and 25–30 °C. Results showed stable operation of the MFCs at low temperatures with only slight reductions of voltage and power generation (11 versus 14 % for double-chamber MFC, while 14 versus 21 % for single-chamber MFC, 1,000 Ω) compared to those at mesophilic temperatures. MFCs operated at low temperatures showed lower COD removal rates accompanied by higher coulombic efficiencies (CEs). PCR-DGGE analysis revealed that psychrotrophic microbes (mainly Arcobacter, Pseudomonas, and Geobacter) dominated on anodes of the MFCs at low temperatures. Interestingly, light-induced red substances appeared on anode of the MFCs operated at low temperature and were proven to be the main anodic microbes (Arcobacter and Pseudomonas). Co-existence of the aforementioned microbes could assist stable low-temperature operation of the MFCs. Cyclic voltammetry analysis supported the results of the CE and DGGE. Stable performance of MFCs at low temperatures might be achieved by the control of anodic bacteria.  相似文献   

8.
Raw primary sludge and the prefermentation liquor (PL) of primary sludge were used to generate electricity in single-chambered air-cathode microbial fuel cells (MFCs). The MFCs treating the primary sludge produced 0.53 V and 370 mW/m2 for the maximum potential and power density, respectively. In the primary sludge-fed MFCs, only 5 % of the total energy production was produced from direct electricity generation, whereas 95 % of that resulted from the conversion of methane to electricity. MFCs treating the PL generated the maximum potential of 0.58 V and maximum power density of 885 mW/m2, respectively. In the energy production analysis, direct electricity production (1,921 Wh/kg TCODrem) in the MFCs treating the PL was much higher than that of the primary sludge-fed MFC (138 Wh/kg TCODrem). Volatile suspended solids during 10 days were reduced to 18.3 and 38 % in the primary sludge-fed MFCs and prefermentation reactor, respectively. These findings suggest that a two-stage process including prefermentation and MFCs is of great benefit on sludge reduction and higher electricity generation from primary sludge.  相似文献   

9.
Aim: To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell. Methods and Results: Microbial fuel cells enriched with palm oil mill effluent (POME) were employed to harvest bioenergy from both artificial wastewater containing acetate and complex POME. The microbial fuel cell (MFC) showed maximum power density of 3004 mW m?2 after continuous feeding with artificial wastewater containing acetate substrate. Subsequent replacement of the acetate substrate with complex substrate of POME recorded maximum power density of 622 mW m?2. Based on 16S rDNA analyses, relatively higher abundance of Deltaproteobacteria (88·5%) was detected in the MFCs fed with acetate artificial wastewater as compared to POME. Meanwhile, members of Gammaproteobacteria, Epsilonproteobacteria and Betaproteobacteria codominated the microbial consortium of the MFC fed with POME with 21, 20 and 18·5% abundances, respectively. Conclusions: Enriched electrochemically active bacteria originated from POME demonstrated potential to generate bioenergy from both acetate and complex POME substrates. Further improvements including the development of MFC systems that are able to utilize both fermentative and nonfermentative substrates in POME are needed to maximize the bioenergy generation. Significance and Impact of the Study: A better understanding of microbial structure is critical for bioenergy generation from POME using MFC. Data obtained in this study improve our understanding of microbial community structure in conversion of POME to electricity.  相似文献   

10.
The effect of operating modes on the simultaneous sulfide and nitrate removal were studied in two-chamber microbial fuel cells (MFCs). The batch and continuous operating modes were compared and evaluated in terms of substrate removal and electricity generation. Upon gradual increase in the influent sulfide concentration from 60 to 1,020 S mg L?1, and the hydraulic retention time decrease from 17.2 to 6 h, the MFC accomplished a good substrate removal efficiency whereby nitrogen and sulfate were the main end products. The removal efficiency of the MFC in the continuous mode was much higher than that in the batch mode, and its current densities in the continuous mode were more stable and higher than in the batch mode, which could be explained by the linear relationship between electrons released by the substrates and accepted on the electrodes. The electricity output in the continuous mode of the MFC was higher than that in the batch mode. MFC's operation in the continuous mode was a better strategy for the simultaneous treatment of sulfide and nitrate.  相似文献   

11.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

12.
Anaerobic/aerobic conditions affected bacterial community composition and the subsequent chlorophenols (CPs) degradation in biocathode microbial fuel cells (MFCs). Bacterial communities acclimated with either 4-chlorophenol (4-CP) or 2,4-dichlorophenol (2,4-DCP) under anaerobiosis can degrade the respective substrates more efficiently than the facultative aerobic bacterial communities. The anaerobic bacterial communities well developed with 2,4-DCP were then adapted to 2,4,6-trichlorophenol (2,4,6-TCP) and successfully stimulated for enhanced 2,4,6-TCP degradation and power generation. A 2,4,6-TCP degradation rate of 0.10 mol/m3/d and a maximum power density of 2.6 W/m3 (11.7 A/m3) were achieved, 138 and 13 % improvements, respectively compared to the controls with no stimulation. Bacterial communities developed with the specific CPs under anaerobic/aerobic conditions as well as the stimulated biofilm shared some dominant genera and also exhibited great differences. These results provide the most convincing evidence to date that anaerobic/aerobic conditions affected CPs degradation with power generation from the biocathode systems, and using deliberate substrates can stimulate the microbial consortia and be potentially feasible for the selection of an appropriate microbial community for the target substrate (e.g. 2,4,6-TCP) degradation in the biocathode MFCs.  相似文献   

13.
Chlorella vulgaris (a freshwater microalga) and Dunaliella tertiolecta (a marine microalga) were grown for bulk harvest, and their biomass was tested as feedstock for electricity production in cubic two-chamber microbial fuel cells (MFCs) at 37°C. The anode inoculum was anaerobic consortium from a municipal sewage sludge digester, enriched separately for the two microalgal biomass feedstocks. After repeated subculturing of the two anaerobic enrichments, the maximum power density obtained in MFCs was higher from C. vulgaris (15.0 vs. 5.3 mW m?2) while power generation was more sustained from D. tertiolecta (13 vs. 9.8 J g-1 volatile solids). Anolytes of algal biomass-fed MFCs also contained substantial levels of butanol (8.7–16 mM with C. vulgaris and 2.5–7.0 mM with D. tertiolecta), which represents an additional form of utilizable energy. Carryover of salts from the marine D. tertiolecta biomass slurry resulted in gradual precipitation of Ca and Mg phosphates on the cathode side of the MFC. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling and sequencing of bacterial communities demonstrated the presence of Wolinella succinogenes and Bacteroides and Synergistes spp. as well as numerous unknown bacteria in both enrichments. The D. tertiolecta enriched consortium contained also Geovibrio thiophilus and Desulfovibrio spp. Thus, the results indicate potential for combining fermentation and anaerobic respiration for bioenergy production from photosynthetic biomass.  相似文献   

14.
The microbial fuel cells (MFCs) are recognized to be highly effective for the biodegradation of phenol. For isolating the phenol-degrading bacteria, the sample containing 500 mg/L phenol was collected from the MFCs. The strain (WL027) was identified basing on the 16S rRNA gene analysis and phylogenetic analysis as Bacillus cereus. The effects of pH, temperature, concentrations of phenol, heavy metal ions, and salt on the growth of strain as well as the degradation of phenol have been carefully studied. The WL027-strain exhibited favorable tolerance for the metal cations including Cr2+, Co2+, Pb2+, and Cu2+ with the concentration of 0.2 mg/L and NaCl solution with a high concentration of 30 g/L. In 41 h, 86.44% of 500 mg/L phenol has been degraded at the initial pH at 6 and the temperature of 30 °C. The strain was highly active electrogenesis bacteria and the coulombic efficiency reached 64.25%, which showed significant advantage on the efficient energy conversion. Therefore, due to the highly efficient degradation of phenol, WL027-strain could be used in the treatment of phenol-containing wastewater.  相似文献   

15.
Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m2. There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (Pmax 76 mW/m2) compared to the wild type (Pmax 46 mW/m2) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.  相似文献   

16.
The present study shows the feasibility of a newly isolated strain Acinetobacter sp. B9 for concurrent removal of phenol and Cr (VI) from wastewater. The experiments were conducted in a batch reactor under aerobic conditions. Initially, when mineral salt solution was used as the culture medium, the strain was found to utilize phenol as sole carbon and energy source while no Cr (VI) removal was observed. However, the addition of glucose as co-carbon source resulted in the removal of both toxicants. This co-removal efficiency of the strain was further improved with nutrient-rich media (NB). Optimum co-removal was determined at 188 mg L?1 of phenol and 3.5 mg L?1 of Cr (VI) concentrations at pH 7.0. Strain B9 followed the orthometabolic pathway for phenol degradation. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) studies showed sorption of chromium as one of the major mechanisms for Cr (VI) removal by B9 cells. Acinetobacter sp. B9 was later on checked for bioremediation of real tannery wastewater. After 96 h of batch treatment of tannery effluent containing an initial 47 mg L?1 phenol and 16 mg L?1 Cr (VI), complete removal of phenol and 87 % reduction of Cr (VI) were attained, showing high efficiency of the bacterial strain for potential application in industrial pollution control.  相似文献   

17.
A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air–cathode MFC fed with a mixture of glucose and acetate (500 mg L?1 COD), 40–60 mV of voltage (17–26 mA m?2 of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air–cathode MFC was fed with reject wastewater (10,000 mg L?1 COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m?2, and 8.9 ± 3.65 mW m?2, respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m?2, and 18.6 ± 7.23 mW m?2, respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.  相似文献   

18.
Development of a solar-powered microbial fuel cell   总被引:1,自引:0,他引:1  
Aims: To understand factors that impact solar‐powered electricity generation by Rhodobacter sphaeroides in a single‐chamber microbial fuel cell (MFC). Methods and Results: The MFC used submerged platinum‐coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate‐enhancing power production over ammonium. Conclusions: Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m?2 (2·9 W m?3). In the dark, power output was less than 0·5 mW m?2 (0·008 W m?3). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. Significance and Impact of the Study: We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one‐chamber solar‐driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two‐chamber systems using photosynthetic bacteria.  相似文献   

19.
The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m3 with current density of 3487 mA/m3.  相似文献   

20.
Microbial fuel cells (MFCs) have received attention as a promising renewable energy technology for waste treatment and energy recovery. We tested a submersible MFC with an innovative design capable of generating a stable voltage of 0.250 ± 0.008 V (with a fixed 470 Ω resistor) directly from primary sludge. In a polarization test, the maximum power density was 0.18 W/m2 at a current density of 0.8 A/m2 with an external resistor of 300 Ω. The anodic solution of the primary sludge needs to be adjusted to a pH 7 for high power generation. The modified primary sludge with an added phosphate buffer prolonged the current generation and increased the power density by 7 and 1.5 times, respectively, in comparison with raw primary sludge. These findings suggest that energy recovery from primary sludge can be maximized using an advanced MFC system with optimum conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号