首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.  相似文献   

2.
Supernatant protein factor (SPF), a protein that stimulates squalene epoxidation, mediates the transfer of squalene between two separable microsomal populations (Kojima, Y., E. J. Friedlander, and K. Bloch, 1981. J. Biol Chem. 256: 7235-7239). We now show that SPF also promotes the transfer of squalene associated with mitochondria or with plasma membranes to total microsomes or rough or smooth microsomal subfractions. Both rough and smooth microsomes have squalene epoxidase activity that is stimulated by SPF.  相似文献   

3.
A soluble protein termed "supernatant protein factor" (SPF) that stimulates microsomal squalene epoxidase has been isolated in this laboratory (Ferguson, J.B., and Bloch, K. (1977) J. Biol. Chem. 252, 5381-5385). We now show that the purified protein also stimulates microsomal squalene-2,3-oxide leads to lanosterol cyclase but has no effect on the subsequent conversion of lanosterol to cholesterol. Phospholipid, specifically phosphatidylglycerol or phosphatidylethanolamine, is required for maximal stimulation of the cyclase by purified SPF. The response of microsomal squalene epoxide-lanosterol cyclase to SPF was abolished by pretreatment of the membranes with phospholipase A2 or by low concentrations of deoxycholate, indicating that an intact membrane system is required. Digestion of intact microsomes with trypsin had no effect on the SPF-stimulated cyclase activity. However, in the presence of 0.4% deoxycholate, trypsin completely inhibited microsomal squalene epoxide-lanosterol cyclase. We conclude that the cyclase is located on the luminal side of the microsomal membrane. SPF also significantly enhances the formation of lanosterol from squalene-2,3-oxide already bound to microsomes. This finding is constant with the proposal that SPF influences intramembrane events.  相似文献   

4.
The microsomal enzyme system from rat liver which catalyzes squalene epoxidation requires a supernatant protein and phospholipids (Tai, H., and Bloch, K. (1972) J. Biol. Chem. 247, 3767). It has now been found that these two cytoplasmic components can be replaced by Triton X-100. The same detergent solubilizes the microsomal squalene epoxidase and the resulting supernatant can be separated into two components, A and B, by DEAE-cellulose chromatography. Neither Fraction A nor B alone has significant squalene epoxidase activity but combining the two affords a reconstituted system 5-fold higher in specific epoxidase activity than that of the original microsomes. FAD and Triton X-100 in addition to molecular oxygen and NADPH are required in the reconstituted system. Subjecting Fraction A to a second DEAE-cellulose chromatography does not change its specific activity but lowers NADH-ferricyanide reductase activity and the protoheme content to 1/25 and 1/4, respectively. When Fraction B was chromatographed on Sephadex G-200, the specific epoxidase activity tested in the presence of Fraction A was increased 3-fold. This procedure also raised the specific activity of NADPH-cytochrome c reductase activity in Fraction B 3-fold. The reconstituted epoxidase system is not inhibited by either carbon monoxide, potassium cyanide, or o-phenanthrolien but Tiron at 1 mM was inhibitory (50%). Erythrocuprein has no effect on epoxidation. No evidence has been found for the participation of hemoproteins (P450 or cytochrome b5) in squalene epoxidation. Component B appears to be identical with the flavoprotein NADPH-cytochrome c reductase. Component A may be a flavoprotein with an easily dissociable prosthetic group.  相似文献   

5.
Microsomal squalene epoxidase has previously been solubilized with Triton X-100 and resolved into fractions, FA and FB, by DEAE-cellulose chromatography (Ono T. and Bloch K (1975) J biol. Chem. 250, 1571-1579). It has now been found that FB is identical with NADPH-cytochrome c reductase (denoted FPT, EC 1.6.2.3). Although both NADPH and NADH served as electron donors, the former was preferred for squalene epoxidase activity in the reconstituted system of FA and FB. FB is characterized by its ability to reduce cytochrome c by NADPH. In place of FB, partially purified FPT was tested for its ability to support squalene epoxidation in the presence of FA. A stepwise purification of the deoxycholate-solubilized FPT yielded an increase in specific FPT activity with a parallel increase in squalene epoxidase activity. Bromelain-solubilized FPT was less effective. Rabbit antisera preparations to the purified FPT solubilized with trypsin were shown to inhibit concomitantly FPT activity and squalene epoxidase activity. These observations support the concept that squalene epoxidation is primarily mediated via a flavoprotein, NADPH-cytochrome c reductase, and a terminal oxidase, squalene epoxidase, which is distinct from cytochrome P-450.  相似文献   

6.
Sterol carrier protein (SCP) (Ritter, M. C., and Dempsey, M.E. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 265-269) promotes the microsomal dehydrogenation of 5-cholest-7-en-3 beta-ol (lathosterol) to 7-dehydrocholesterol. This promotion occurs whether the substrate is exogenous or preincorporated into microsomes. Similarly, SCP promotes an intermembrane transfer of lathosterol from one microsomal population to another (Ishibashi, T., and Bloch, K. (1981) J. Biol. Chem. 256, 12962-12967). Here we present evidence for an SCP-mediated collisional interaction which results in the intermembrane transfer of sterol substrate and excludes a conventional substrate-carrier mechanism for SCP. Radioactive carboxymethyl SCP is shown to bind to microsomes and to anionic phospholipids but not to phosphatidylcholine. Treatment of microsomes with trypsin, but not with phospholipase A2, reduces SCP binding. Binding studies with small molecules substantiate the identity of SCP with Z-protein.  相似文献   

7.
The activity of rat liver microsomal squalene epoxidase is inhibited effectively by digitonin. Concentrations of 0.8 to 1.2 mg/ml of digitonin cause total inhibition of microsomal (0.75 mg protein/ml) squalene epoxidase either in microsomes that were pretreated with digitonin and subsequently washed and subjected to epoxidase assay or when digitonin was added directly to the assay. The inhibition of squalene epoxidase by digitonin is concentration-dependent and takes place rapidly within 5 min of exposure of the microsomes to digitonin. Octylglucoside, dimethylsulfoxide, CHAPS, as well as cholesterol or total microsomal lipid extract were ineffective in restoring the digitonin-inhibited squalene epoxidase activity. Epoxidase activity in digitonin-treated microsomes was fully restored by Triton X-100. The reactivation by Triton X-100 displays a concentration optimum with maximal reactivation of the epoxidase (0.7 mg protein/ml) occurring at 0.2% Triton X-100. Microsomal 2,3-oxidosqualene-lanosterol cyclase is also inhibited by digitonin. Higher concentrations of digitonin are required to obtain full inhibition of the cyclase activity and only 40% inhibition of cyclase activity is observed at 1 mg/ml of digitonin. Solubilized (subunit size 55 to 66 kDa) and microsomal (subunit size 97 kDa) 3-hydroxy-3-methylglutaryl CoA reductase are totally unaffected by the same concentration of digitonin. Squalene synthetase, another microsomal enzyme in the biosynthetic pathway of cholesterol, is activated by digitonin. A 2.2-fold activation of squalene synthetase is observed at 0.8 mg/ml of digitonin. The results agree with a model in which squalene, and to a lesser degree 2,3-oxidosqualene, are segregated by digitonin into separate intramembranal pools.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Modulation of squalene epoxidase activity by nucleotides was studied in rat liver microsomal preparations. Supernatant protein factor (SPF) stimulates hepatic microsome-associated squalene epoxidase. The stimulatory effect of this activator was abolished by some nucleotides, and the effect of ATP on SPF was examined in detail. The inhibition by ATP was time- and concentration-dependent and was increased remarkably by the addition of Mg2+. Binding studies employing Sephadex column chromatography showed that ATP and SPF formed a complex (molar ratio, 1:1). These results suggest that nucleotides may regulate cholesterol metabolism through inactivation of the supernatant protein activator in the presence of bivalent metal ions.  相似文献   

9.
Terminal acetylenic fatty acid mechanism-based inhibitors (Ortiz de Montellano, P. R., and Reich, N. O. (1984) J. Biol. Chem. 259, 4136-4141) were used as probes in determining the substrate specificity of rabbit lung cytochrome P-450 isozymes of pregnant animals in both microsomes and reconstituted systems. Lung microsomal and reconstituted P-450 form 5-catalyzed lauric acid omega- and (omega-1)-hydroxylase activities were inhibited by a 12-carbon terminal acetylenic fatty acid, 11-dodecynoic acid (11-DDYA), and an 18-carbon terminal acetylenic fatty acid, 17-octadecynoic acid (17-ODYA). Rabbit lung microsomal lauric acid omega-hydroxylase activity was more sensitive to inhibition by 11-DDYA than was (omega-1)-hydroxylase activity. In reconstituted systems containing purified P-450 form 5, both omega- and (omega-1)-hydroxylation of lauric acid were inhibited in parallel when either 11-DDYA or 17-ODYA was used. These data suggest the presence of at least two P-450 isozymes in rabbit lung microsomes capable of lauric acid omega-hydroxylation. This is the first report indicating the multiplicity of lauric acid hydroxylases in lung microsomes. Lung microsomal prostaglandin omega-hydroxylation, mediated by the pregnancy-inducible P-450PG-omega (Williams, D. E., Hale, S. E., Okita, R. T., and Masters, B. S. S. (1984) J. Biol. Chem. 259, 14600-14608) was subject to inhibition by 17-ODYA only, whereas 11-DDYA acid was not an effective inhibitor of this hydroxylase. We have recently developed a new terminal acetylenic fatty acid, 12-hydroxy-16-heptadecynoic acid (12-HHDYA), that contains a hydroxyl group at the omega-6 position. We show that 12-HHDYA possesses a high degree of selectivity for the inactivation of rabbit lung microsomal prostaglandin omega-hydroxylase activity which cannot be obtained with the long chain acetylenic inhibitor, 17-ODYA. In addition, 12-HHDYA has no effect on lauric acid omega- or omega-1-hydroxylation or on benzphetamine N-demethylation. The development of this new terminal acetylenic fatty acid inhibitor provides us with a useful tool with which to study the physiological role of prostaglandin omega-hydroxylation in the rabbit lung during pregnancy.  相似文献   

10.
11.
We describe a simple assay for measuring squalene epoxidase specific activity in Saccharomyces cerevisiae cell-free extracts, by using [14C] farnesyl pyrophosphate as substrate. Cofactor requirements for activity are FAD and NADPH or NADH, NADPH being the preferred reduced pyridine nucleotide. Squalene epoxidase activity is localized in microsomal fraction and no supernatant soluble factor is required for maximum activity. Microsomal fraction converted farnesyl pyrophosphate into squalene, squalene 2,3-epoxide and lanosterol, showing that squalene 2,3-epoxide-lanosterol cyclase is also a microsome-bound enzyme. We show also that squalene epoxidase activity is not inhibited by ergosterol or lanosterol, but that enzyme synthesis is induced by oxygen.  相似文献   

12.
We have reported previously that squalene is the major radiolabeled nonsaponifiable lipid product derived from [3H]acetate in short term incubations of frog retinas (Keller, R. K., Fliesler, S. J., and Nellis, S. W. (1988) J. Biol. Chem. 263, 2250-2254). In the present study, we demonstrate that newly synthesized squalene is incorporated into rod outer segments under similar in vitro conditions. We show further that squalene is an endogenous constituent of frog rod outer segment membranes; its concentration is approximately 9.5 nmol/mumol of phospholipid or about 9% of the level of cholesterol. Pulse-chase experiments with radiolabeled precursors revealed no metabolism of outer segment squalene to sterols in up to 20 h of chase. Taken together with our previous absolute rate studies (Keller, R. K., Fliesler, S. J., and Nellis, S. W. (1988) J. Biol. Chem. 263, 2250-2254), these results suggest that most, if not all, of the squalene synthesized by the frog retina is transported to rod outer segments. Synthesis of protein is not required for squalene transport since puromycin had no effect on squalene incorporation into outer segments. Conversely, inhibition of isoprenoid synthesis with mevinolin had no effect on the incorporation of opsin into the outer segment. These latter results support the conclusion that the de novo synthesis and subsequent intracellular trafficking of opsin and isoprenoid lipids destined for the outer segment occur via independent mechanisms.  相似文献   

13.
The biological activities of pancreatic presecretory and secretory proteins synthesized in vitro were compared in studies of (a) the binding of nascent amylase to its substrate, glycogen, (b) the binding of nascent trypsinogen 1, trypsinogen 2+3, and chymotrypsinogen 1 to Sepharose-bound soybean trypsin inhibitor, and (c) the activation of nascent trypsinogen by porcine enterokinase. Nascent secretory proteins synthesized in vitro using a mRNA-dependent gel-filtered reticulocyte lysate translation system supplemented with canine pancreas rough microsomes or canine pancreas mRNA and micrococcal nuclease-treated microsomal membranes showed biological activities similar to authentic secretory proteins if oxidized glutathione was added during their synthesis. Proteins synthesized in the presence of membranes and the absence of glutathione showed significantly less biological activity due to incorrect development of conformation. Presecretory proteins synthesized in vitro with canine pancreas mRNA in the absence of microsomal membranes had little or no activity after translation in either the absence or presence of glutathione. These and previous findings (Scheele, G. A., and Jacoby, R. (1982) J. Biol. Chem. 257, 12277-12282) indicate that proteolytic removal of the NH2-terminal transport peptide is necessary to allow correct conformational development, including the formation of native disulfide bonds, which not only stabilizes the molecule but allows expression of authentic biological and probiological activity.  相似文献   

14.
Abstract: A peripheral neuropathy characterized by a transient demyelinating/remyelinating sequence results when young rats are fed a tellurium-containing diet. The neuropathy occurs secondary to a systemic block in cholesterol synthesis. Squalene accumulation suggested the lesion was at the level of squalene epoxidase, a microsomal monooxygenase that uses NADPH cytochrome P450 reductase to receive its necessary reducing equivalents from NADPH. We have now demonstrated directly specificity for squalene epoxidase; our in vitro studies show that squalene epoxidase is inhibited 50% in the presence of 5 µ M tellurite, the presumptive in vivo active metabolite. Under these conditions, the activities of other monooxygenases, aniline hydroxylase and benzo( a )pyrene hydroxylase, were inhibited less than 5%. We also present data suggesting that tellurite inhibits squalene epoxidation by interacting with highly susceptible -SH groups present on this monooxygenase. In vivo studies of specificity were based on the compensatory response to feeding of tellurium. Following tellurium intoxication, there was up-regulation of squalene epoxidase activity both in liver (11-fold) and sciatic nerve (fivefold). This induction was a specific response, as demonstrated in liver by the lack of up-regulation following exposure to the nonspecific microsomal enzyme inducer, phenobarbital. As a control, we also measured the microsomal monooxygenase activities of aniline hydroxylase and benzo( a )pyrene hydroxylase. Although they were induced following phenobarbital exposure, activities of these monooxygenases were not affected following tellurium intoxication, providing further evidence of specificity of tellurium intoxication for squalene epoxidase.  相似文献   

15.
Squalene epoxidase activity has been studied in cell-free preparations of Chinese hamster ovary (CHO) cells and rat liver. In contrast to rat liver microsomal squalene epoxidase, the enzyme of CHO cells is only slightly activated by the autologous cytosolic fraction, whereas phosphatidylglycerol or rat liver cytosolic preparations are potent stimulators of this enzyme. Triton X-100, a known stimulator of the hepatic squalene epoxidase, has no activating effect on the enzyme of CHO cells. The squalene epoxidase activity of both rat liver and CHO cells varies significantly according to the lipid content of the growth medium or diet. The changes in enzyme activity are shown to be entirely due to altered microsomal enzyme per se and not to changes in the activating properties of the soluble fraction. These results further support the proposed regulatory role of squalene epoxidase in cholesterogenesis.  相似文献   

16.
Cardiac microsomes were incubated with [gamma-32P]ATP and a cardiac adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase in the presence of ethylene glycol bis(bets-aminoethyl ether)-N,N'-tetraacetic acid. After solubilization in sodium dodecyl sulfate and fractionation by polyacrylamide gel electrophoresis, a single microsomal protein component of approximately 22,000 daltons was found to bind most of the 32P label. The 32P labeling of this component increased several fold when NaF was included in the incubation medium. No other component of cardiac microsomes, including sarcoplasmic reticulum ATPase protein, contained significant amounts of 32P label. This 22,000-dalton phosphoprotein formed by cyclic AMP-dependent protein kinase had stability characteristics of a phosphoester rather than an acyl phosphate. Washing of microsomes with buffered KCl did not decrease the amount of 32P labeling to the 22,000-dalton protein, suggesting that this protein is associated with the membranes of sarcoplasmic reticulum rather than being a contaminant from other soluble proteins. The 22,000-dalton protein was susceptible to trypsin. Brief digestion with trypsin in the presence of 1 M sucrose did not significantly affect microsomal calcium transport activity, but prevented both subsequent phosphorylation of the 22,000-dalton protein and stimulation of calcium uptake by cyclic AMP-dependent protein kinase, suggesting that this protein is a modulator of the calcium pump. These results are consistent with previous findings (Kirchberger, M.A., Tada, M., and Katz, A.M. (1974) J. Biol. Chem. 249, 6166-6173; Tada, M., Kirchberger, M.A., Repke, D.I., and Katz, A.M. (1974) J. Biol. Chem. 249, 6174-6180) that cyclic AMP-dependent protein kinase-catalyzed phosphorylation is associated with stimulation of calcium transport in the cardiac sarcoplasmic reticulum, and further indicate that this phosphorylation occurs at a component of low mass (22,000 daltons) of the cardiac sarcoplasmic reticulum which, while separable from the calcium transport ATPase protein (100,000 daltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, has the ability to regulate calcium transport by the cardiac sarcoplasmic reticulum.  相似文献   

17.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

18.
Regulation of squalene epoxidase in HepG2 cells   总被引:2,自引:0,他引:2  
Regulation of squalene epoxidase in the cholesterol biosynthetic pathway was studied in a human hepatoma cell line, HepG2 cells. Since the squalene epoxidase activity in cell homogenates was found to be stimulated by the addition of Triton X-100, enzyme activity was determined in the presence of this detergent. Incubation of HepG2 cells for 18 h with L-654,969, a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, increased squalene epoxidase activity dose-dependently. On the other hand, low density lipoprotein (LDL) and 25-hydroxy-cholesterol decreased the enzyme activity. These results demonstrate that squalene epoxidase is regulated by the concentrations of endogenous and exogenous sterols. The affinity of the enzyme for squalene was not changed by treatment with L-654,969. Cytosolic (S105) fractions, prepared from HepG2 cells treated with or without L-654,969, had no effect on microsomal squalene epoxidase activity of HepG2 cells, in contrast to the stimulating effect of S105 fractions from rat liver homogenate. Mevalonate, LDL, and oxysterol treatment abolished the effect of L-654,969. Simultaneous addition of cycloheximide and actinomycin D also prevented enzyme induction in HepG2 cells. From these results, the change in squalene epoxidase activity is thought to be caused by the change in the amount of enzyme protein. It is further suggested that squalene epoxidase activity is suppressed only by sterols, not by nonsterol derivative(s) of mevalonate, in contrast to the regulation of HMG-CoA reductase.  相似文献   

19.
Squalene epoxidase, encoded by the ERG1 gene in yeast, is a key enzyme of sterol biosynthesis. Analysis of subcellular fractions revealed that squalene epoxidase was present in the microsomal fraction (30,000 × g) and also cofractionated with lipid particles. A dual localization of Erg1p was confirmed by immunofluorescence microscopy. On the basis of the distribution of marker proteins, 62% of cellular Erg1p could be assigned to the endoplasmic reticulum and 38% to lipid particles in late logarithmic-phase cells. In contrast, sterol Δ24-methyltransferase (Erg6p), an enzyme catalyzing a late step in sterol biosynthesis, was found mainly in lipid particles cofractionating with triacylglycerols and steryl esters. The relative distribution of Erg1p between the endoplasmic reticulum and lipid particles changes during growth. Squalene epoxidase (Erg1p) was absent in an erg1 disruptant strain and was induced fivefold in lipid particles and in the endoplasmic reticulum when the ERG1 gene was overexpressed from a multicopy plasmid. The amount of squalene epoxidase in both compartments was also induced approximately fivefold by treatment of yeast cells with terbinafine, an inhibitor of the fungal squalene epoxidase. In contrast to the distribution of the protein, enzymatic activity of squalene epoxidase was only detectable in the endoplasmic reticulum but was absent from isolated lipid particles. When lipid particles of the wild-type strain and microsomes of an erg1 disruptant were mixed, squalene epoxidase activity was partially restored. These findings suggest that factor(s) present in the endoplasmic reticulum are required for squalene epoxidase activity. Close contact between lipid particles and endoplasmic reticulum may be necessary for a concerted action of these two compartments in sterol biosynthesis.  相似文献   

20.
Squalene epoxidase was purified from rat liver microsomes by DEAE-cellulose, alumina Cν gel, hydroxylapatite, CM-Sephadex C-50 and Cibacron Blue Sepharose 4B in the presence of Triton X-100. The specific activity was increased 50 fold with a yield of about 10%. On SDS-polyacrylamide gel electrophoresis, the preparation gave one major band and one minor band with apparent molecular weights of 47,000 and 27,000 daltons, respectively. The protein of 47,000 was the most probable candidate for squalene epoxidase. Squalene epoxidase activity could be reconstituted in the squalene epoxidase preparation with the addition of NADPH-cytochrome P-450 reductase, FAD, and Triton X-100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号