首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molybdate-stabilized nontransformed form of the glucocorticoid receptor from rabbit liver has been purified approximately 8,000-fold by a three-step procedure. The first step involved protamine sulfate precipitation which allowed a 5-6-fold purification with 85% yield. The second step, affinity chromatography using a N-(12-dodecyl-amino) 9 alpha-fluoro-16 alpha-methyl-11 beta, 17 alpha-dihydroxy-3-oxo-1,4-androstadiene-17 beta-carboxamide substituted Sepharose gel, purified the receptor 1,500-2,000-fold as calculated by specific radioactivity. The third step involved high performance liquid chromatography resulting in overall purification near 8,000-fold. The final glucocorticoid receptor appeared about 60% pure. The purified nontransformed glucocorticoid receptor had a sedimentation coefficient of 9 S in 0.16 M phosphate containing 5-20% sucrose gradients and the Stokes radius was 6.1-6.3 nm as determined by low pressure gel filtration and HPLC. Binding specificity of the purified receptor was identical to that previously reported in crude rabbit liver cytosol. Isoelectricfocusing and ion-exchange chromatography showed that the purification procedure affected the net charge of the receptor protein. This phenomenon could be related to interactions between the glucocorticoid receptor and cytosolic factors. SDS polyacrylamide gel electrophoresis showed a major Mr = 94,000 protein band which is in good agreement with previously reported values for glucocorticoid receptors. Transformation of the purified receptor was achieved after removal of molybdate by exposure at 25 degrees C to 0.4 M KCl. Characterization of the molecular forms was performed by means of incorporation into isolated nuclei, affinity towards polyanionic exchangers and high pressure size exclusion chromatography. Results show that about 40% of the receptor is in the transformed state.  相似文献   

2.
Purification of the glucocorticoid receptor from rat liver cytosol.   总被引:12,自引:0,他引:12  
The [3H]-triamcinolone acetonide-labeled glucocorticoid receptor from rat liver cytosol was purified to 85% homogeneity according to sodium dodecyl sulfate gel electrophoresis. It consisted of one subunit with a molecular weight of 89,000 and had one ligand-binding site per molecule. The purification involved sequential chromatography on phosphocellulose, DNA-cellulose twice, and Sephadex G-200. Between the two chromatography steps on DNA-cellulose, the receptor was heat activated. The receptor was affinity eluted from the second DNA-cellulose column with pyrodixal 5'-phosphate. The purification achieved in the first three chromatographic steps varied between 60 and 95% homogeneity in different experiments. After chromatography on the second DNA-cellulose column, the steroid.receptor complex had a Stokes radius of 6.0 nm and a sedimentation coefficient of 3.4 S in 0.15 M KCl. In the absence of KCl, the sedimentation coefficient was 3.6 S. After concentration on hydroxylapatite, the steroid.receptor complex was analyzed by isoelectric focusing in polyacrylamide gel. The radioactivity was shown to focus together with the major protein band with pI 5.8. Following limited proteolysis with trypsin, the radioactivity, together with the major protein band, focused at pI 6.2 as previously described for the unpurified steroid.receptor complex.  相似文献   

3.
The molybdate-stabilized calf uterine estradiol receptor has been purified to near-homogeneity by a three-step procedure. Initial purification by heparin-Sepharose chromatography provides a concentrated receptor extract in 40% yield with a 5-10-fold increase in purity. The inclusion of molybdate in phosphate-buffered cytosol enhances 9-10 S receptor stability in high salt and allows elution of the oligomeric receptor complex from heparin-Sepharose with 0.4 M KCl. A second affinity step utilizing estrone carboxymethyloxime coupled to diaminoethyl bis(2-hydroxypropoxy)butane-Sepharose Cl-4B increases purification by a further 1600-fold. High performance liquid chromatography gives homogeneous receptor which migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a polypeptide of Mr approximately 89,000. The purified molybdate-stabilized receptor sediments at 9.3 +/- 0.2 S (n = 4) in glycerol gradients and has a Stokes radius of 74 +/- 3 A (n = 2) giving a calculated Mr approximately 290,000. These properties and the steroid-binding specificity of the purified receptor bear a close similarity to those found for the 9-10 S receptor in crude cytosol.  相似文献   

4.
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000).  相似文献   

5.
The DNA-binding and physical properties of the rat liver cytosol glucocorticoid receptor were determined before and after Sephacryl S-300 filtration in the presence or absence of molybdate. Cytosol was prepared and labeled with [3H]triamcinolone acetonide in buffer containing molybdate. Prior to gel filtration, only 5 +/- 3% (mean +/- S.E.) of labeled receptors bound to DNA-cellulose. After gel filtration in the presence and absence of molybdate, the per cent of labeled receptors binding to DNA-cellulose was 57 +/- 10% and 83 +/- 1%, respectively. Nonreceptor fractions from the Sephacryl S-300 column contained a heat-stable factor which blocked receptor activation but did not block the binding of activated receptors to DNA-cellulose. The activation inhibitor eluted from the column in the region of the albumin standard, but after heating its size was considerably reduced (Mr less than 3500). Receptors activated by Sephacryl S-300 filtration underwent the same size changes in the presence or absence of molybdate. Prior to gel filtration, the S20,w of labeled receptors in the presence of molybdate was 9.2 +/- 0.2 S. After filtration in the presence and absence of molybdate, the S20,w of labeled receptors was 4.2 +/- 0.2 and 4.4 +/- 0.1 S, respectively. The Stokes radius (Rs) of labeled receptors after gel filtration in either the presence or absence of molybdate was 65 +/- 1 A. From the Rs and S20,w values, the molecular weight (Mr) of activated receptors was calculated to be 115,000 to 121,000, which was in close agreement with the Mr of affinity-labeled receptors determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
Gel-exclusion high-performance liquid chromatography (HPLC) has been used to separate the untransformed from the transformed glucocorticoid receptor (GC-R) extracted from mouse AtT-20 cells. With 200 mM potassium phosphate as the eluent, an efficient separation of the forms of the GC-R is attained in 15-20 min. The untransformed cytosolic GC-R elutes from the column with a Stokes radius (Rs) of 8.2-8.6 nm, as do the molybdate-stabilized GC-R, the purified untransformed GC-R, and the cross-linked cytosolic GC-R. GC-R transformed in vitro by either ammonium sulfate precipitation, KCl treatment, or G-25 chromatography elutes with an Rs of 5.7-6 nm. Also, GC-R extracted from the nucleus with either 0.3 M KCl or 2 mM sodium tungstate, or purified by two cycles of DNA-cellulose chromatography, has an Rs of 5.5-6.3 nm. The data are identical either in the presence or in the absence of 20 mM Na2MoO4, suggesting that molybdate is not causing aggregation to produce a larger Rs value than that of the native receptor. Vertical tube rotor sucrose gradient ultracentrifugation of cytosol produces three forms of the GC-R: 9.1 S, 5.2 S, and 3.8 S. Sequential analysis of the GC-R forms by HPLC and vertical tube rotor ultracentrifugation and vice versa allows for the hydrodynamic determination of molecular weight within a very short time period (2-3 h total).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The rat hepatic glucocorticoid, dioxin and oxysterol receptors were subjected to high performance liquid chromatography on size-exclusion and anion-exchange columns. Both the glucocorticoid receptor and the dioxin receptor had a Stokes radius Rs approximately 7.5 nm, expected value for heteromeric complexes containing a dimer of the Mr approximately 90,000 heat shock protein, hsp90 (Rs approximately 7.0 nm). The oxysterol receptor represented a much smaller entity (Rs approximately 6.0 nm). When analyzed on a Mono Q anion-exchange column, the molybdate-stabilized glucocorticoid receptor and dioxin receptor eluted as single peaks at approximately 0.30 M and 0.26-0.28 M NaCl, respectively, whereas the oxysterol receptor represented a less negatively charged species (0.11-0.14 M NaCl). Following washing of the Mono Q column with molybdate-free buffer, the activated monomeric glucocorticoid receptor was detected (0.10-0.12 M NaCl). In contrast, no modification in the elution pattern of the dioxin receptor and the oxysterol receptor was observed. These data demonstrate differences in the physico-chemical properties of the glucocorticoid, dioxin and oxysterol receptors, respectively, which might reflect structural differences.  相似文献   

8.
We have purified the membrane-intrinsic glycerol-3-phosphate dehydrogenase from both normal and hyperthyroid rat liver mitochondria by extraction with Triton X-100, hydrophobic affinity chromatography, ion exchange chromatography, gel filtration, and FAD-linked Sepharose 4B affinity chromatography. The yields in both cases were over 20%, and purification ranged from 800- to 650-fold in mitochondria from hyperthyroid and normal rats, respectively. The final preparations appeared to be greater than 95% pure by polyacrylamide gel electrophoresis in the presence or absence of sodium dodecyl sulfate. The pure enzyme focused at pH 5.5 and produced a biphasic thermal inactivation plot at 50 degrees C. The holoenzyme was found to have a molecular mass of 250,000 daltons on gel filtration. The subunit molecular mass was found to be 74,000 daltons +/- 3,000 by sodium dodecyl sulfate-gel electrophoresis and high-performance liquid chromatography gel filtration in 0.1% sodium dodecyl sulfate. 1 mol of the holoenzyme preparation contains 1.1 mol of non-heme iron and 0.7-0.9 mol of noncovalently bound FAD. The absorption spectrum has a maximum at 375 nm and a shoulder at 450 nm which is bleached on treatment with sodium dithionite. The enzymatic reaction is competitively inhibited by glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, and phosphoglycolic acid. The apparent Km for DL-alpha-glycerol 3-phosphate and noncovalently bound FAD were found to be 6 mM and 7 microM, respectively.  相似文献   

9.
The molybdate-stabilized rat liver glucocorticoid receptor complex was purified 9000-fold with a 46% yield by steroid-affinity chromatography and DEAE-Sephacel ion-exchange chromatography. The purified glucocorticoid receptor was identified as a 90-92-kDa protein by SDS/polyacrylamide gel electrophoresis. Raising the temperature to 25 degrees C in the absence of molybdate resulted in increased binding of the receptor complex to DNA-cellulose or nuclei, similar to the effect on the cytosolic complex. The purified complex has a sedimentation coefficient of 9-10 S before and after heat treatment in the absence of molybdate. The appearance of smaller 3-4-S species was unrelated to the extent of DNA-cellulose binding of the complex. The process termed 'transformation', i.e. increasing the affinity for DNA, is not concomitant with subunit dissociation or loss of RNA. Highly purified glucocorticoid receptor could be covalently modified with biotin to retain its steroid-binding activity but with a 50% decrease in nuclear binding capacity. The biotin-modified complex reacts with streptavidin in solution without losing its steroid.  相似文献   

10.
Aliquots of rat liver cytosol glucocorticoid-receptor complexes (GRc) were transformed by an incubation with 8-10 mM ATP at 0 degrees C and were compared with those transformed by an exposure to 23 degrees C. The extent of receptor transformation was measured by chromatography of the samples over columns of DEAE-Sephacel. The ATP-transformed complexes, like those which were heat-transformed, exhibited lower affinity for the positively charged ion-exchange resin and were eluted with 0.12 M KCl (peak-I): the nontransformed complexes appeared to possess higher affinity and required 0.21 M KCl (peak II) for their elution. As expected, the receptor in the peak-I exhibited the DNA-cellulose binding capacity and sedimented as 4S in sucrose gradients. Peak II contained an 8-9S glucocorticoid receptor (GR) form that showed reduced affinity for DNA-cellulose. Presence of sodium tungstate (5 mM) prevented both heat and ATP transformation of the GRc resulting in the elution of the complexes in the region of nontransformed receptors. When parallel experiments were performed, binding of the cytosol GRc to rat liver nuclei or DNA-cellulose was seen to increase 10-15 fold upon transformation by heat or ATP: tungstate treatment blocked this process completely. The transformed and nontransformed GRc were also differentially fractionated by (NH4)2SO4: tungstate-treated (nontransformed) receptor required higher salt concentration and was precipitated at 55% saturation. In addition, the GRc could be extracted from DNA-cellulose by an incubation of the affinity resin with sodium tungstate resulting in approximately 500-fold purification of the receptor with a 30% yield. These studies show that the nontransformed, and the heat-, salt-, and ATP-transformed GRc from the rat liver cytosol can be separated chromatographically, and that the use of tungstate facilitates the resolution of these different receptor forms. In addition, extraction of the receptor from DNA-cellulose by tungstate provides another new and efficient method of partial receptor purification.  相似文献   

11.
The non-transformed, molybdate-stabilized chick oviduct cytosol progesterone receptor was purified approx. 7000-fold using biospecific affinity resin (NADAC-Sepharose), DEAE-Sephacel chromatography and gel filtration on Bio-Gel A-0.5m agarose. The purified preparation contained progesterone receptor which sedimented as a 7.9S molecule, had a Stokes' radius of 7.5 nm, was composed of three major peptides corresponding to Mr 108,000, 90,000 and 79,000. Upon removal of molybdate, the purified [3H]progesterone-receptor complex could be transformed from the 8S form to a 4S form by exposure to 23 degrees C or by an incubation with 10 mM ATP at 0 degrees C. The purified thermally transformed receptor could be adsorbed to columns of ATP-Sepharose. No cytosol factor(s) appeared to be required for the 8S to 4S transformation of purified receptor or for its subsequent binding to ATP-Sepharose. Incubation of purified non-transformed receptor preparation with [gamma-32P]ATP and cAMP-dependent protein kinase led to incorporation of radioactivity in all the three major peptides at serine residues. The results of this study show for the first time that purified 8S progesterone receptor can be phosphorylated in vitro by a cAMP-dependent protein kinase, and that it can be transformed to a 4S form by 0 degrees C incubation with 10 mM ATP.  相似文献   

12.
Tocopherol binding activity accompanying a rat liver cytosolic protein with molecular weight of 30-36 kDa has been demonstrated previously, although the isolation of the protein has not been reported. We now report the purification of an alpha-tocopherol-binding protein (TBP) from rat liver cytosol utilizing three chromatographic procedures: gel filtration, Affi-Gel Blue affinity chromatography, and chromatofocusing. Three peaks of specific alpha-tocopherol-binding activity were resolved on Affi-Gel Blue, referred to as AFB-1A, 1B, and 2. A 32-kDa homogeneous form was obtained after chromatofocusing of AFB-1B. D-alpha-[3H]tocopherol was displaced from homogeneous TBP in the presence of 500-fold excess of nonlabeled alpha-tocopherol, indicating the specificity of the binding. Anti-TBP rabbit antisera identified only one protein in rat hepatic cytosol on Western blotting. TBP immunoreactivity was found in the cytosol of rat liver and the lysate of fractionated hepatocytes, but not in the cytosol of other organs (including the heart, spleen, testes, and lung) nor in the lysate of fractioned Ito cells, endothelial cells, or Kupffer cells isolated from rat liver. Semi-quantitative ELISA demonstrated that rat liver cytosol contained approximately 2 mg TBP/g of cytosol protein. This immunoreactivity was associated with only the 30-36 kDa gel filtration fractions of rat liver cytosol and with both AFB-1A and -1B but not with AFB-2.  相似文献   

13.
With heat treatment (20 degrees C for 30 min), the glucocorticoid-receptor complex becomes 'activated' and undergoes an increase in affinity for DNA. A two-stage procedure was used to separate sequentially the rat liver glucocorticoid-receptor complex from proteins with high and low affinity for DNA. DNA-cellulose column chromatography of unheated cytosol resulted in the retention of DNA-binding proteins, but not the unactivated receptor complex. Heat treatment of the column eluate resulted in increased affinity of the receptor complex to DNA, and chromatography on DNA-cellulose then yielded receptor complex free from proteins with low affinity for DNA. Removal of DNA-binding proteins during the first chromatographic step was critically dependent on ionic conditions and the ratio of cytosol chromatographed to DNA-cellulose. A purification of 11000-fold (85% yield) was achieved by this procedure. The partially purified receptor complex was taken up by rat liver nuclei.  相似文献   

14.
Treatment of cytosol from the rat ventral prostate with cold acetone (-20 degrees C) evoked a 8 approximately 10-fold increase in the binding capacity with 5alpha-dihydrotestosterone (DHT). Starting from the extract of acetone-dried prostate cytosol, some 400 approximately 600-fold purification of the DHT-binding protein complex was acieved by (NH4)2504 fractionation, DEAE-cellulose chromatography and gel- filtration with Sephadex G-200. The purified 3H-DHT-binding protein complex was incorporated into the nuclei from the ventral prostate in a temperature dependent manner. The similar incorporation was also observed in nuclei from the liver and the kidney...  相似文献   

15.
Type I and Type II adrenal steroid receptors from rat renal and hippocampal cytosols were studied by the technique of Fast Protein Liquid Chromatography. Type I receptors were labelled with [3H]aldosterone plus excess RU26988, and Type II receptors with [3H]dexamethasone. On a Mono Q anion exchange column the molybdate-stabilized renal and hippocampal Type I receptors both eluted as single symmetrical peaks at 0.27 M NaCl, with a recovery of approximately 90% and 60-fold purification (renal) and 10-15-fold (hippocampal). Molybdate-stabilized Type II binding sites from both hippocampal and renal cytosols co-eluted with the Type I sites. On Superose gel filtration renal Type I receptor-steroid complexes consistently eluted two fractions later than hippocampal Type I complexes, suggesting that the renal complexes are smaller; Type II receptor-steroid complexes from both cytosols co-eluted, consistently one fraction behind hippocampal Type I sites. Sequential gel filtration and anion exchange chromatography achieved a 1000-fold purification of renal Type I binding sites, with an overall recovery of 10%.  相似文献   

16.
The molybdate-stabilized GHRC was isolated from rat liver cytosol with a 9000-fold purification and 46% yield. The major purification step was achieved using an affinity matrix consisting of an agarose support coupled to a dexamethasone ligand via an aliphatic spacer arm. Spacer arms containing disulfide bridges were found to be unsuitable due to their instability in cytosol. To reduce the non-specific binding properties of the affinity matrix, underivatized amino groups were acetylated, since the receptor was found to bind avidly to such groups thus evading elution by the ligand. Sodium molybdate present during biospecific elution from the gel stabilized the steroid-binding activity of the receptor. The use of denaturing and sulfhydryl modifying reagents (NaSCN, DMSO, Mersalyl) during elution led to partial or complete irreversible loss of steroid-binding activity of the unoccupied receptor. Efficient biospecific elution occurred at competing concentration of high affinity steroid in the presence of sodium molybdate. The ligand specific eluate was further purified by DEAE-Sephacel chromatography resulting in additional purification of 3.2-fold. The GHRC eluted from the DEAE-Sephacel column at a salt concentration characteristic of the untransformed GHRC. Molybdate was removed from the purified untransformed GHRC in the ligand eluate by DEAE-Sephacel chromatography in the absence of molybdate, for subsequent heat transformation.  相似文献   

17.
From the cytosol fraction (supernatant fluid at 105,000 g) of chicken liver, 4-en-3-oxosteroid 5 beta-reductase (EC 1.3.1.23) was purified by ammonium sulfate precipitation, followed by Butyl Toyopearl, DEAE-Sepharose, Sephadex G-75 and hydroxylapatite column chromatographies. The enzyme activity was quantitated from amount of the 5 beta-reduced metabolites derived from [4-14C]testosterone. During the purification procedures, 17 beta-hydroxysteroid dehydrogenase which was present in the cytosol fraction was separated from 5 beta-reductase fraction by the Butyl Toyopearl column chromatography. By the DEAE-Sepharose column chromatography, 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were able to be removed from 5 beta-reductase fraction. The final enzyme preparation was apparently homogeneous on SDS-polyacrylamide gel electrophoresis. Purification was about 13,600-fold from the hepatic cytosol. The molecular weight of this enzyme was estimated as 37,000 Da by SDS-polyacrylamide gel electrophoresis and also by Sephadex G-75 gel filtration. For 5 beta-reduction of 4-en-3-oxosteroids, such as testosterone, androstenedione and progesterone, NADPH was specifically required as cofactor. Km of 5 beta-reductase for NADPH was estimated as 4.22 x 10(-6) M and for testosterone, 4.60 x 10(-6) M. The optimum pH of this enzyme ranged from pH 5.0 to 6.5 and other enzymic properties of the 5 beta-reductase were examined.  相似文献   

18.
A rapid procedure involving DNA-cellulose chromatography followed either by sedimentation in a high-salt glycerol gradient or by gel filtration is described for the complete purification of Escherichia coli DNA-dependent RNA polymerase.  相似文献   

19.
Purification of an active opioid-binding protein from bovine striatum   总被引:12,自引:0,他引:12  
We report the purification to apparent homogeneity of an active opioid-binding protein solubilized from bovine striatal membranes. The purification was accomplished in two steps: affinity chromatography on beta-naltrexylethylenediamine (NED)-CH-Sepharose 4B followed by lectin affinity chromatography on wheat germ agglutinin-agarose. The ligand affinity-purified fraction exhibits stereospecific and saturable binding of opiates and is heat-sensitive. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the NED-purified material gave 6-8 bands by silver staining or autoradiography of radioiodinated material. Under nondenaturing conditions, the NED-purified material elutes in a molecular mass range between 300 and 350 kDa from gel exclusion chromatography on Ultrogel AcA-34. The specific activity of the affinity-purified fraction (800-1500 pmol/mg protein) is enriched 4000 to 7000-fold over that of the membrane-bound or unpurified soluble receptor. Further purification (10-20-fold) is achieved by chromatography of the NED eluate on wheat germ agglutinin-agarose. The eluted fraction shows a single protein (65 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified material is an acidic glycoprotein with a pI of 6.0-6.3 and binds opiates with a specific activity (12,000-15,000 pmol/mg) that is 65,000 to 75,000-fold greater (theoretical, 77,000-fold) than that of the membrane-bound or crude soluble receptors.  相似文献   

20.
In this study, we investigated inhibitory effects of some metal ions on human erythrocyte glutathione reductase. For this purpose, initially human erythrocyte glutathione reductase was purified 1051-fold in a yield of 41% by using 2', 5'-ADP Sepharose 4B affinity gel and Sephadex G-200 gel filtration chromatography. SDS polyacrylamide gel electrophoresis was done in order to control the purification of enzyme. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Hg(2+), Cd(2+), Pb(2+), Cu(2+), Fe(3+) and Al3+ exhibited inhibitory effects on the enzyme in vitro. K(i) constants and IC(50) values for metal ions were determined by Lineweaver-Burk graphs and plotting activity % vs. [I]. IC(50) values of Pb(2+), Hg(2+), Cu(2+), Cd(2+), Fe(3+) and Al(3+) were 0.011, 0.020, 0.0252, 0.0373, 0.209 and 0.229 mM, and the Ki constants 0.0254+/-0.0027, 0.0378+/-0.0043, 0.0409+/-0.0048, 0.0558+/-0.0083, 0.403+/-0.043 and 1.137+/-0.2 mM, respectively. While Pb(2+), Hg(2+), Cd(2+) and Fe(3+) showed competitive inhibition, others displayed noncompetitive inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号