首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure in the extracellular, intradiscal domain of rhodopsin surrounding the Cys110–Cys187 disulfide bond has been shown to be important for correct folding of this receptor in vivo. Retinitis pigmentosa misfolding mutants of the apoprotein opsin (such as P23H) misfold, as defined by a deficiency in ability to bind 11-cis retinal and form rhodopsin. These mutants also possess an abnormal Cys185–Cys187 disulfide bond in the intradiscal domain. Here, by mutating Cys185 to alanine, we eliminate the possibility of forming this abnormal disulfide bond and investigate the effect of combining the C185A mutation with the retinitis pigmentosa mutation P23H. Both the P23H and P23H/C185A double mutant suffer from low expression and poor 11-cis retinal binding. Our data suggest that misfolding events occur that do not have an absolute requirement for abnormal Cys185–Cys187 disulfide bond formation. In the detergent-solubilised, purified state, the C185A mutation allows formation of rhodopsin at wild-type (WT) levels, but has interesting effects on protein stability. C185A rhodopsin is less thermally stable than WT, whereas C185A opsin shows the same ability to regenerate rhodopsin in detergent as WT. Purified C185A and WT opsins, however, have contrasting 11-cis retinal binding kinetics. A high proportion of C185A opsin binds 11-cis retinal with a slow rate that reflects a denatured state of opsin reverting to a fast-binding, open-pocket conformation. This slower rate is not observed in a stabilising lipid/detergent system, 1,2-dimyristoyl-sn-glycero-3-phosphocholine/Chaps, in which C185A exhibits WT (fast) retinal binding. We propose that the C185A mutation destabilises the open-pocket conformation of opsin in detergent resulting in an equilibrium between correctly folded and denatured states of the protein. This equilibrium can be driven towards the correctly folded rhodopsin state by the binding of 11-cis retinal.  相似文献   

2.
Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1-10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.  相似文献   

3.
Variants of rhodopsin, a complex of 11-cis retinal and opsin, cause retinitis pigmentosa (RP), a degenerative disease of the retina. Trafficking defects due to rhodopsin misfolding have been proposed as the most likely basis of the disease, but other potentially overlapping mechanisms may also apply. Pharmacological therapies for RP must target the major disease mechanism and contend with overlap, if it occurs. To this end, we have explored the molecular basis of rhodopsin RP in the context of pharmacological rescue with 11-cis retinal. Stable inducible cell lines were constructed to express wild-type opsin; the pathogenic variants T4R, T17M, P23A, P23H, P23L, and C110Y; or the nonpathogenic variants F220L and A299S. Pharmacological rescue was measured as the fold increase in rhodopsin or opsin levels upon addition of 11-cis retinal during opsin expression. Only Pro23 and T17M variants were rescued significantly. C110Y opsin was produced at low levels and did not yield rhodopsin, whereas the T4R, F220L, and A299S proteins reached near-wild-type levels and changed little with 11-cis retinal. All of the mutant rhodopsins exhibited misfolding, which increased over a broad range in the order F220L, A299S, T4R, T17M, P23A, P23H, P23L, as determined by decreased thermal stability in the dark and increased hydroxylamine sensitivity. Pharmacological rescue increased as misfolding decreased, but was limited for the least misfolded variants. Significantly, pathogenic variants also showed abnormal photobleaching behavior, including an increased ratio of metarhodopsin-I-like species to metarhodopsin-II-like species and aberrant photoproduct accumulation with prolonged illumination. These results, combined with an analysis of published biochemical and clinical studies, suggest that many rhodopsin variants cause disease by affecting both biosynthesis and photoactivity. We conclude that pharmacological rescue is promising as a broadly effective therapy for rhodopsin RP, particularly if implemented in a way that minimizes the photoactivity of the mutant proteins.  相似文献   

4.
We inserted into the germline of mice either a mutant or wild-type allele from a patient with retinitis pigmentosa and a missense mutation (P23H) in the rhodopsin gene. All three lines of transgenic mice with the mutant allele developed photoreceptor degeneration; the one with the least severe retinal photoreceptor degeneration had the lowest transgene expression, which was one-sixth the level of endogenous murine rod opsin. Of two lines of mice with the wild-type allele, one expressed approximately equal amounts of transgenic and murine opsin and maintained normal retinal function and structure. The other expressed approximately 5 times more transgenic than murine opsin and developed a retinal degeneration similar to that found in mice carrying a mutant allele, presumably due to the overexpression of this protein. Our findings help to establish the pathogenicity of mutant human P23H rod opsin and suggest that overexpression of wild-type human rod opsin leads to a remarkably similar photoreceptor degeneration.  相似文献   

5.
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.  相似文献   

6.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

7.
Methylation of the active-site lysine of rhodopsin   总被引:2,自引:0,他引:2  
C Longstaff  R R Rando 《Biochemistry》1985,24(27):8137-8145
Purified bovine rhodopsin was reductively methylated with formaldehyde and pyridine/borane with the incorporation of approximately 20 methyl groups in the protein. Rhodopsin contains 10 non-active-site lysines, which account for the uptake of the 20 methyl groups. The permethylated rhodopsin thus formed is active toward bleaching, regeneration with 11-cis-retinal, and the activation of the GTPase (G protein) when photolyzed. The critical active-site lysine of permethylated rhodopsin can be liberated by photolysis. This lysine can be reductively methylated at 4 degrees C. Methylation under these conditions leads to the incorporations of approximately 1.5 methyl groups per opsin molecule using radioactive formaldehyde, with the ratio of epsilon-dimethyllysine:epsilon-monomethyllysine:lysine being approximately 5:4:1. The modified opsin(s) can regenerate with 11-cis-retinal to produce a mixture of active-site methylated and unmethylated rhodopsins having a lambda max = 512 nm. Using [14C]formaldehyde and [3H]retinal followed by reduction of the Schiff base, digestion, and chromatography showed that the active-site N-methyllysine was bound to the retinal. Treatment of the methylated opsin mixture (containing 1.5 active-site methyl groups) with o-phthalaldehyde/mercaptoethanol to functionalize the opsin bearing unreacted lysine, followed by regeneration with 11-cis-retinal and chromatographic separation, led to the preparation of the pure active-site epsilon-lysine monomethylated rhodopsin with a lambda max = 520 nm, significantly shifted bathochromically from rhodopsin or permethylated rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The largest class of rhodopsin mutations causing autosomal dominant retinitis pigmentosa (adRP) is mutations that lead to misfolding and aggregation of the receptor. The misfolding mutants have been characterized biochemically, and categorized as either partial or complete misfolding mutants. This classification is incomplete and does not provide sufficient information to fully understand the disease pathogenesis and evaluate therapeutic strategies. A Förster resonance energy transfer (FRET) method was utilized to directly assess the aggregation properties of misfolding rhodopsin mutants within the cell. Partial (P23H and P267L) and complete (G188R, H211P, and P267R) misfolding mutants were characterized to reveal variability in aggregation properties. The complete misfolding mutants all behaved similarly, forming aggregates when expressed alone, minimally interacting with the wild-type receptor when coexpressed, and were unresponsive to treatment with the pharmacological chaperone 9-cis retinal. In contrast, variability was observed between the partial misfolding mutants. In the opsin form, the P23H mutant behaved similarly as the complete misfolding mutants. In contrast, the opsin form of the P267L mutant existed as both aggregates and oligomers when expressed alone and formed mostly oligomers with the wild-type receptor when coexpressed. The partial misfolding mutants both reacted similarly to the pharmacological chaperone 9-cis retinal, displaying improved folding and oligomerization when expressed alone but aggregating with wild-type receptor when coexpressed. The observed differences in aggregation properties and effect of 9-cis retinal predict different outcomes in disease pathophysiology and suggest that retinoid-based chaperones will be ineffective or even detrimental.  相似文献   

9.
Mutation of L125R in trasmembrane helix III of rhodopsin, associated with the retinal degenerative disease retinitis pigmentosa, was previously shown to cause structural misfolding of the mutant protein. Also, conservative mutations at this position were found to cause partial misfolding of the mutant receptors. We report here on a series of mutations at position 125 to further investigate the role of Leu125 in the correct folding and function of rhodopsin. In particular, the effect of the size of the substituted amino-acid side chain in the functionality of the receptor, measured as the ability of the mutant rhodopsins to activate the G protein transducin, has been analysed. The following mutations have been studied: L125G, L125N, L125I, L125H, L125P, L125T, L125D, L125E, L125Y and L125W. Most of the mutant proteins, expressed in COS-1 cells, showed reduced 11-cis-retinal binding, red-shifts in the wavelength of the visible absorbance maximum, and increased reactivity towards hydroxylamine in the dark. Thermal stability in the dark was reduced, particularly for L125P, L125Y and L125W mutants. The ability of the mutant rhodopsins to activate the G protein transducin was significantly reduced in a size dependent manner, especially in the case of the bulkier L125Y and L125W substitutions, suggesting a steric effect of the substituted amino acid. On the basis of the present and previous results, Leu125 in transmembrane helix III of rhodopsin, in the vicinity of the beta-ionone ring of 11-cis-retinal, is proposed to be an important residue in maintaining the correct structure of the chromophore binding pocket. Thus, bulky substitutions at this position may affect the structure and signallling of the receptor by altering the optimal conformation of the retinal binding pocket, rather than by direct interaction with the chromophore, as seen from the recent crystallographic structure of rhodopsin.  相似文献   

10.
Protein conformational disorders, which include certain types of retinitis pigmentosa, are a set of inherited human diseases in which mutant proteins are misfolded and often aggregated. Many opsin mutants associated with retinitis pigmentosa, the most common being P23H, are misfolded and retained within the cell. Here, we describe a pharmacological chaperone, 11-cis-7-ring retinal, that quantitatively induces the in vivo folding of P23H-opsin. The rescued protein forms pigment, acquires mature glycosylation, and is transported to the cell surface. Additionally, we determined the temperature stability of the rescued protein as well as the reactivity of the retinal-opsin Schiff base to hydroxylamine. Our study unveils novel properties of P23H-opsin and its interaction with the chromophore. These properties suggest that 11-cis-7-ring retinal may be a useful therapeutic agent for the rescue of P23H-opsin and the prevention of retinal degeneration.  相似文献   

11.
Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.  相似文献   

12.
Two different mutations at Gly-90 in the second transmembrane helix of the photoreceptor protein rhodopsin have been proposed to lead to different phenotypes. G90D has been classically associated with congenital night blindness, whereas the newly reported G90V substitution was linked to a retinitis pigmentosa phenotype. Here, we used Val/Asp replacements of the native Gly at position 90 to unravel the structure/function divergences caused by these mutations and the potential molecular mechanisms of inherited retinal disease. The G90V and G90D mutants have a similar conformation around the Schiff base linkage region in the dark state and same regeneration kinetics with 11-cis-retinal, but G90V has dramatically reduced thermal stability when compared with the G90D mutant rhodopsin. The G90V mutant also shows, like G90D, an altered photobleaching pattern and capacity to activate Gt in the opsin state. Furthermore, the regeneration of the G90V mutant with 9-cis-retinal was improved, achieving the same A(280)/A(500) as wild type isorhodopsin. Hydroxylamine resistance was also recovered, indicating a compact structure around the Schiff base linkage, and the thermal stability was substantially improved when compared with the 11-cis-regenerated mutant. These results support the role of thermal instability and/or abnormal photoproduct formation in eliciting a retinitis pigmentosa phenotype. The improved stability and more compact structure of the G90V mutant when it was regenerated with 9-cis-retinal brings about the possibility that this isomer or other modified retinoid analogues might be used in potential treatment strategies for mutants showing the same structural features.  相似文献   

13.
We have performed resonance enhanced Raman measurements of retinal isomers in solution (all-trans, 11-cis, 9-cis, and 13-cis) and cetyltrimethylammonium bromide (CTAB) detergent extracts of bovine rhodopsin near physiological temperatures (17 degrees C). In order to measure these photolabile systems, we have developed a general technique which allows Raman measurements of any photosensitive material. This technique involves imposing a molecular velocity transverse to the Raman exciting laser beam sufficient to ensure that any given molecule moves through the beam so that it has little probability of absorbing a photon. We have also measured the resonance Raman spectra of crystals of the same retinal isomers. The data show that each isomer has a distinct and characteristic Raman spectra and that the spectrum of 11-cis-retinal is quite similar but not identical with that of rhodopsin and similarly for 9-cis-retinal compared with isorhodopsin. In agreement with previous work, the Raman data demonstrate that retinal and opsin are joined by a protonated Schiff base. Due to the fact that the Raman spectra of 11-cis-retinal (solution) and rhodopsin show bands near 998 and 1018 cm(-1), a spectral region previously assigned to C-Me stretching motions, it is suggested that 11-cis-retinal in solution is compased of a mixture of 12-s-trans and 12-s-cis, and that the conformation of rhodopsin is (perhaps distorted) 12-s-trans.  相似文献   

14.
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.  相似文献   

15.
Naturally occurring point mutations in the opsin gene cause the retinal diseases retinitis pigmentosa and congenital night blindness. Although these diseases involve similar mutations in very close locations in rhodopsin, their progression is very different, with retinitis pigmentosa being severe and causing retinal degeneration. We report on the expression and characterization of the recently found T94I mutation associated with congenital night blindness, in the second transmembrane helix or rhodopsin, and mutations at the same site. T94I mutant rhodopsin folded properly and was able to bind 11-cis-retinal to form chromophore, but it showed a blue-shifted visible band at 478 nm and reduced molar extinction coefficient. Furthermore, T94I showed dramatically reduced thermal stability, extremely long lived metarhodopsin II intermediate, and highly increased reactivity toward hydroxylamine in the dark, when compared with wild type rhodopsin. The results are consistent with the location of Thr-94 in close proximity to Glu-113 counterion in the vicinity of the Schiff base linkage and suggest a role for this residue in maintaining the correct dark inactive conformation of the receptor. The reported results, together with previously published data on the other two known congenital night blindness mutants, suggest that the molecular mechanism underlying this disease may not be structural misfolding, as proposed for retinitis pigmentosa mutants, but abnormal functioning of the receptor by decreased thermal stability and/or constitutive activity.  相似文献   

16.
Iodopsin can replace its chromophore (11-cis retinal) by added 9-cis retinal, resulting in the formation of isoiodopsin. NaBH4 bleaches iodopsin in the dark. In a relatively low concentration of digitonin, the scotopsin (the protein moiety of chicken rhodopsin) removes 11-cis retinal from iodopsin in the dark. These facts suggest that the linkage of the chromophore to opsin in the iodopsin molecule (presumably a Schiff-base linkage) is accessible to these reagents, which is different from the situation in rhodopsin.  相似文献   

17.
Light-dependent production of 11-cis-retinal by the retinal pigment epithelium (RPE) and normal regeneration of rhodopsin under photic conditions involve the RPE retinal G protein-coupled receptor (RGR) opsin. This microsomal opsin is bound to all-trans-retinal which, upon illumination, isomerizes stereospecifically to the 11-cis isomer. In this paper, we investigate the synthesis of the all-trans-retinal chromophore of RGR in cultured ARPE-hRGR and freshly isolated bovine RPE cells. Exogenous all-trans-[(3)H]retinol is incorporated into intact RPE cells and converted mainly into retinyl esters and all-trans-retinal. The intracellular processing of all-trans-[(3)H]retinol results in physiological binding to RGR of a radiolabeled retinoid, identified as all-trans-[(3)H]retinal. The ARPE-hRGR cells contain a membrane-bound NADPH-dependent retinol dehydrogenase that reacts efficiently with all-trans-retinol but not the 11-cis isomer. The NADPH-dependent all-trans-retinol dehydrogenase activity in isolated RPE microsomal membranes can be linked in vitro to specific binding of the chromophore to RGR. These findings provide confirmation that RGR opsin binds the chromophore, all-trans-retinal, in the dark. A novel all-trans-retinol dehydrogenase exists in the RPE and performs a critical function in chromophore biosynthesis.  相似文献   

18.
The rhodopsin crystal structure reveals that intradiscal loop E-2 covers the 11-cis-retinal, creating a "retinal plug." Recently, we noticed the ends of loop E-2 are linked by an ion pair between residues Arg-177 and Asp-190, near the highly conserved disulfide bond. This ion pair appears biologically significant; it is conserved in almost all vertebrate opsins and may occur in other G-protein-coupled receptors. We report here that the Arg-177/Asp-190 ion pair is critical for the folding and stability of dark state rhodopsin. We find ion pair mutants that regenerate with retinal are functionally and spectrally wild-type-like yet thermally unstable in their dark state because of rapid hydrolysis of the retinal Schiff base linkage. Surprisingly, Arrhenius analysis indicates that the activation energies for the hydrolysis process are similar between the ion pair mutants and wild-type rhodopsin. Furthermore, the ion pair mutants do not show increased reactivity toward hydroxylamine, suggesting that their instability is not caused by an increased exposure to bulk solvent. Our results indicate that the loop E-2 ion pair is important for rhodopsin stability and thus suggest that retinitis pigmentosa observed in patients with Asp-190 mutations may in part be the result of thermally unstable rhodopsin proteins.  相似文献   

19.
Zinc deficiency and retinitis pigmentosa are both important factors resulting in retinal dysfunction and night blindness. In this study, we address the critical biochemical and structural relevance of zinc ions in rhodopsin and examine whether zinc deficiency can lead to rhodopsin dysfunction. We report the identification of a high-affinity zinc coordination site within the transmembrane domain of rhodopsin, coordinated by the side chains of two highly conserved residues, Glu(122) in transmembrane helix III and His(211) in transmembrane helix V. We also demonstrate that this zinc coordination is critical for rhodopsin folding, 11-cis-retinal binding, and the stability of the chromophore-receptor interaction, defects of which are observed in retinitis pigmentosa. Furthermore, a cluster of retinitis pigmentosa mutations is localized within and around this zinc binding site. Based on these studies, we believe that improvement in zinc binding to rhodopsin at this site within the transmembrane domain may be a pharmacological approach for the treatment of select retinitis pigmentosa mutations. Transmembrane coordination of zinc may also be an important common principle across G-protein-coupled receptors.  相似文献   

20.
L125R, a severe retinitis pigmentosa rhodopsin missense mutation, results in rhodopsin protein misfolding, retinal degeneration, and ultimately blindness. The initiating structural events leading to this protein misfolding are unknown. Through the use of compensatory mutations, in conjunction with crystal structure-based molecular analysis, we established that the larger and positively charged Arg replacing Leu125 sterically hinders both the adjacent Trp126 and a critical interhelical interaction between transmembrane III (TM III) and transmembrane V (TM V; Glu122 and His211 salt bridge). Further, analysis of another retinitis pigmentosa mutation, A164V (TM IV), indicates that the larger Val interferes with residues Leu119 and Ile123 on TM III, leading to the disruption of the same critical Glu122-His211 salt bridge (TM III-TM V interaction). Combined, these localized defects in interhelical interactions cause structural changes that interfere with the ability of opsin to bind 11-cis-retinal. These distortions ultimately lead to the formation of an abnormal disulfide bond, severe protein instability, aggregation, and endoplasmic reticulum retention. In the absence of a crystal or NMR structure of each retinitis pigmentosa mutation, compensatory mutagenesis and crystal structure-based analysis are powerful tools in determining the localized molecular disturbances. A detailed understanding of the initiating local perturbations created by missense mutations such as these, not only identifies critical factors required for correct folding and stability, but additionally opens avenues for rational drug design, mimicking the compensatory mutations and stabilizing the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号