首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In recent years, more and more attentions are put on the remediation of Cr(VI) contamination with chromate resistant bacteria. Leucobacter sp. CRB1 was a novel chromate reducing bacteria isolated from the soil of chromite ore processing residue (COPR) disposal site in Changsha, China. The objectives of this study were to evaluate the Cr(VI) tolerance of Leucobacter sp. CRB1 as well as its tolerant mechanism, and Cr(VI) reduction ability. The results showed that Leucobacter sp. CRB1 was able to tolerate 4,000 mg/l of hexavalent chromium with 34.5% reduction efficiency. At the optimum pH 9.0, the maximum concentration of chromate be reduced completely was 1,818 mg/l in growing cells and 2,100 mg/l in resting cells. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) showed that extracellular Cr(VI) reduction of Leucobacter sp. CRB1 contributed to its high tolerance and high reduction ability. With repeating spiking, 2,490 mg/l hexavalent chromium was reduced totally within 17 h. The results suggest Leucobacter sp. CRB1 has potential application for remediation of high concentration of Cr(VI) contamination.  相似文献   

2.
A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240T (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L−1, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 °C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L−1 h−1, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal.  相似文献   

3.
A hexavalent chromium [Cr(VI)] reducing bacterial strain was isolated from chromium-containing slag. It was identified as Pannonibacter phragmitetus based on physiological, biochemical characteristics and 16S rRNA gene sequence analysis. This bacterium displayed great Cr(VI) reduction capability. The Cr(VI) could be completely removed in 24 h under anaerobic condition when the initial concentration was 1,917 mg L−1, with the maximum reduction rate of 562.8 mg L−1 h−1. The Cr(VI) reduction rate increased with the increase of Cr(VI) concentration. P. phragmitetus was able to use many carbon sources such as lactose, fructose, glucose, pyruvate, citrate, formate, lactate, NADPH and NADH as electron donors, among which the lactate had the greatest power to promote the reduction process. Zn2+, Cd2+ and Ni2+ inhibited, while Cu2+, Pb2+, Mn2+ and Co2+ stimulated the reduction. The optimum pH and temperature for reduction were 9.0 and 30 °C, respectively. The results indicated that this strain had great potential for application in the bioremediation of chromate-polluted soil and water systems.  相似文献   

4.
Two bacterial consortia were developed by continuous enrichment of microbial population of tannery and pulp and paper mill effluent contained Serratia mercascens, Pseudomonas fluorescence, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter sp. identified by 16S rDNA method. The consortia evaluated for removal of chromate [(Cr(VI)] in shake flask culture indicated pulp and paper mill consortium had more potential for removal of chromate. Acinetobacter sp. isolated from pulp and paper mill consortium removed higher amount of chromate [Cr(VI)] under aerobic conditions. Parameters optimized in different carbon, nitrogen sources, and pH, indicated maximum removal of chromate in sodium acetate (0.2%), sodium nitrate (0.1%) and pH 7 by Acinetobacter sp. Bacteria was applied in 2-l bioreactor significantly removed chromate after 3 days. The results of the study indicated removal of more than 75% chromium by Acinetobacter sp. determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometer after 7 days. Study of microbial [Cr(VI)] removal and identification of reduction intermediates has been hindered by the lack of analytical techniques. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) which indicated bioaccumulation of chromium in the bacterial cells.  相似文献   

5.
Dmitrenko  G. N.  Konovalova  V. V.  Shum  O. A. 《Microbiology》2003,72(3):327-330
Non-nitrate-reducing collection bacteria from the genus Pseudomonas were found to be able to use hexavalent chromium as a terminal electron acceptor. The reduction of Cr(VI) was accompanied by an increase in the cell biomass. At Cr(VI) concentrations in the medium lower than 15 mg/l, the non-nitrate-reducing pseudomonads reduced Cr(VI) less efficiently than did denitrifying pseudomonads. In contrast, at Cr(VI) concentrations higher than 30 mg/l, Cr(VI) was reduced more efficiently by the non-nitrate-reducing pseudomonads than by the denitrifying pseudomonads.  相似文献   

6.
Natural habitats are often characterized by the coexistence of Zn and Cr. This study assessed the potential of two Gram-positive, Cr(VI)-reducing, aerobic bacterial strains belonging to Arthrobacter genera, which were isolated from basalt samples taken from the most polluted region of the Republic of Georgia, to remediate Cr(VI) in environments in the presence of Zn(II). Our batch experiments revealed that the addition of Zn(II) to the tested bacterial cells significantly enhanced the accumulation of Cr. According to electron spin resonance (ESR) measurements, the presence of Zn(II) ions did not change the nature of Cr(V) and Cr(III) complexes generated during the microbial reduction of Cr(VI). The efficiency of Cr(VI) reduction also remained unchanged after the addition of 50 mg/l of Zn(II) to the bacterial cells. However, at high concentrations of Zn(II) (higher than 200 mg/l), the transformation of Cr(VI) to Cr(V) and Cr(III) complexes decreases significantly. In addition, it was shown that the accumulation pattern of Zn in the tested bacterial species in the presence of 100 mg/l of Cr(VI) fits the Langmuir–Freundlich model well. The two tested bacterial strains exhibited different characteristics of Zn accumulation.  相似文献   

7.
This study reported the hexavalent chromium removal by untreated Mucor racemosus biomass and the possible mechanism of Cr (VI) removal to the biomass. The optimum pH, biomass dose, initial Cr (VI) concentration and contact time were investigated thoroughly to optimize the removal condition. The metal removal by the biomass was strongly affected by pH and the optimum pH ranged from 0.5 to 1.0. The residual total Cr was determined. It was found that dichromate reduction occurred at a low very low pH value. At biomass dose 6 g/l, almost all the Cr (VI) ions were removed in the optimum condition. Higher removal percentage was observed at lower initial concentrations of Cr (VI) ions, while the removal capacity of the biomass linearly depended on the initial Cr (VI) concentration. More than half of Cr (VI) ions were diminished within 1 h of contact and removal process reached a relative equilibrium in approximately 8 h. Almost all of the Cr (VI) ions were removed in 24 h when initial concentrations were below 100 mg/l. The equilibrium data were fitted in to the Langmuir and the Freundlich isotherm models and the correlated coefficients were gained from the models. A Fourier transform infrared spectra was employed to elucidate clearly the possible biosorption mechanism as well.  相似文献   

8.
Two chromium-resistant bacteria (IFR-2 and IFR-3) capable of reducing/transforming Cr(VI) to Cr(III) were isolated from tannery effluents. Isolates IFR-2 and IFR-3 were identified as Staphylococcus aureus and Pediococcus pentosaceus respectively by 16S rRNA gene sequence analyses. Both isolates can grow well on 2,000 mg/l Cr(VI) (as K2Cr2O7) in Luria-Bertani (LB) medium. Reduction of Cr(VI) was found to be growth-associated in both isolates and IFR-2 and IFR-3 reduced 20 mg/l Cr(VI) completely in 6 and 24 h respectively. The Cr(VI) reduction due to chromate reductase activity was detected in the culture supernatant and cell lysate but not at all in the cell extract supernatant of both isolates. Whole cells of IFR-2 and IFR-3 converted 24 and 30% of the initial Cr(VI) concentration (1 mg/l) in 45 min respectively at 37°C. NiCl2 stimulated the growth of IFR-2 whereas HgCl2 and CdCl2 significantly inhibited the growth of both isolates. Optimum temperature and pH for growth of and Cr(VI) reduction by both isolates were found to be between 35 and 40°C and pH 7.0 to 8.0. The two bacterial isolates can be good candidates for detoxification of Cr(VI) in industrial effluents.  相似文献   

9.
The main aim of this study was to investigate the influence of the sulfate ion on the tolerance to Cr(VI) and the Cr(VI) reduction in a yeast strain isolated from tannery wastewater and identified as Candida sp. FGSFEP by the D1/D2 domain sequence of the 26S rRNA gene. The Candida sp. FGSFEP strain was grown in culture media with sulfate concentrations ranging from 0 to 23.92 mM, in absence and presence of Cr(VI) [1.7 and 3.3 mM]. In absence of Cr(VI), the yeast specific growth rate was practically the same in every sulfate concentration tested, which suggests that sulfate had no stimulating or inhibiting effect on the yeast cell growth. In contrast, at the two initial Cr(VI) concentrations assayed, the specific growth rate of Candida sp. FGSFEP rose when sulfate concentration increased. Likewise, the greater efficiencies and volumetric rates of Cr(VI) reduction exhibited by Candida sp. FGSFEP were obtained at high sulfate concentrations. Yeast was capable of reducing 100% of 1.7 mM Cr(VI) and 84% of 3.3 mM Cr(VI), with rates of 0.98 and 0.44 mg Cr(VI)/L h, with 10 and 23.92 mM sulfate concentrations, respectively. These results indicate that sulfate plays an important role in the tolerance to Cr(VI) and Cr(VI) reduction in Candida sp. FGSFEP. These findings may have significant implications in the biological treatment of Cr(VI)-laden wastewaters.  相似文献   

10.
Enrichment mixed cultures tolerating relatively high concentrations of chromium and salt ions were isolated and their bioaccumulation properties improved by adaptation. Mixed cultures were enriched in Nutrient Broth media containing 25-300 mg l(-1) Cr(VI) and 0%, 2%, 4%, 6% (w/v) NaCl. Bioaccumulation of Cr(VI) was studied in a batch system as a function of initial pH (7, 8 and 9), Cr(VI) and NaCl concentrations. Increasing NaCl and Cr(VI) concentrations led to significant decreases in percentage uptake and dried weight of mixed cultures but increased maximum specific chromium uptake. The maximum specific chromium uptake value at pH 8 was 58.9 mg g(-1) for 316.1 mg l(-1) Cr(VI) in the absence of NaCl, while at pH 9 it was 130.1 mg g(-1) in media including 194.5 mg l(-1) Cr(VI) and 2% NaCl concentrations. At 4% NaCl, the maximum Cr(VI) uptake of 127.0 mg g(-1) for 221.1 mg l(-1) Cr(VI) occurred at pH 9, while at 6% NaCl the maximum Cr(VI) uptake of 114.9 mg g(-1) for 278.1 mg l(-1) Cr(VI) was found at pH 7.  相似文献   

11.
Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention. Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.  相似文献   

12.
The present work highlighted the studies on Cr(VI) reduction by cells of Acinetobacter haemolyticus (A. haemolyticus). The strain tolerated 90 mg Cr(VI) l−1 in LB broth compared to only 30 mg Cr(VI) l−1 in LB agar. From the FTIR analysis, the Cr(III) species formed was also most likely to form complexes with carboxyl, hydroxyl, and amide groups from the bacteria. A TEM study showed the absence of precipitates on the cell wall region of the bacteria. Instead, microprecipitates were observed in the cytoplasmic region of the cells, suggesting the transportation of Cr(VI) into the cells. Intracellular reduction of Cr(VI) was supported by a reductase test using soluble crude cell-free extracts. The specific reductase activity obtained was 0.52 μg Cr(VI) reduced per mg of protein an hour at pH 7.2 and 37°C. Our results indicated that A. haemolyticus can be used as a promising microorganism for Cr(VI) reduction from industrial wastewaters.  相似文献   

13.
This article reports on the isolation and characterization of a Cr(VI) resistant bacterial strain, having plant growth promoting properties to improve general growth of plant in chromium-contaminated soil through rhizosphere colonization. The strain was isolated from the sludge of waste canal carrying industrial effluents. The minimum inhibitory concentration of chromium to this strain was found to be 450 and 400 mM in complex and minimal media, respectively. The strain also showed varied degree of resistance to Cd, Co, As, Ni and Zn. It exhibited potential Cr(VI) reducing ability under aerobic culture conditions, and the factors affecting Cr(VI) reduction by this strain were evaluated. The optimum pH and temperature required to achieve maximum Cr(VI) reduction values were 7 and 35°C, respectively. Higher concentration of Cr(VI) slowed down the reduction, but with longer incubation time it reduced nearly all detectable amount of Cr(VI). The strain showed positive response to IAA production and phosphate solubilization. It promoted the growth of chilli plants in waste-fed soil with or without additional Cr through its establishment in rhizosphere. The successful establishment of KUCr3 in the rhizosphere of chilli plants helped to reduce Cr uptake by the test plant. This strain shows a promise that the multifarious role of this strain would be useful in the Cr-contaminated rhizosphere soil as a good bioremediation and plant growth promoting agent as well. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCr3, as the name given to it, was identified as a strain of Cellulosimicrobium cellulans.  相似文献   

14.
Cr(VI) at 2.5, 5, 7.5 and 10 mg/l was removed over 1–5 days by a freshwater cyanobacterium, Chroococcus sp. 2.5 mg Cr(VI)/l gave the optimum rate. With 5 mg Cr(VI)/l, activities of superoxide dismutase and catalase were increased. Amounts of palmitic (16:0), stearic (18:0) and oleic acid (18:1) in the cell also increased after exposure to Cr(VI).  相似文献   

15.
Non-nitrate-reducing collection bacteria from the genus Pseudomonas were found to be able to use hexavalent chromium as a terminal electron acceptor. The reduction of Cr(VI) was accompanied by an increase in the cell biomass. At the Cr(VI) concentrations in the medium lower than 15 mg/l, the non-nitrate-reducing pseudomonads reduced Cr(VI) less efficiently than did denitrifying pseudomonads. In contrast, at the Cr(VI) concentrations higher than 30 mg/l, Cr(VI) was reduced more efficiently by the non-nitrate-reducing pseudomonads than by the denitrifying pseudomonads.  相似文献   

16.
Chromate-reducing microorganisms with the ability of reducing toxic chromate [Cr(VI)] into insoluble trivalent chromium [Cr(III)] are very useful in treatment of Cr(VI)-contaminated water. In this study, a novel chromate-reducing bacterium was isolated from Mn/Cr-contaminated soil. Based on morphological, physiological/biochemical characteristics and 16S rRNA gene sequence analyses, this strain was identified as Intrasporangium sp. strain Q5-1. This bacterium has high Cr(VI) resistance with a MIC of 17 mmol l−1 and is able to reduce Cr(VI) aerobically. The best condition of Cr(VI) reduction for Q5-1 is pH 8.0 at 37°C. Strain Q5-1 is also able to reduce Cr(VI) in resting (non-growth) conditions using a variety of carbon sources as well as in the absence of a carbon source. Acetate (1 mmol l−1) is the most efficient carbon source for stimulating Cr(VI) reduction. In order to apply strain Q5-1 to remove Cr(VI) from wastewater, the bacterial cells were immobilized with different matrices. Q5-1 cells embedded with compounding beads containing 4% PVA, 3% sodium alginate, 1.5% active carbon and 3% diatomite showed a similar Cr(VI) reduction rates to that of free cells. In addition, the immobilized Q5-1 cells have the advantages over free cells in being more stable, easier to re-use and minimal clogging in continuous systems. This study provides potential applications of a novel immobilized chromate-reducing bacterium for Cr(VI) bioremediation.  相似文献   

17.
Photosynthetic Euglena gracilis grown with different K2CrO4 concentrations was analyzed for its ability to take up, retain and reduce Cr(VI). For comparison, cells were also exposed to CrCl3. Cellular Cr(VI) uptake at pH 7.2 showed a hyperbolic saturation pattern with K m of 1.1 mM, V m of 16 nmol (h × 107 cells)−1, and K i sulfate of 0.4 mM. Kinetic parameters for sulfate uptake were similar, K m = 0.83 mM, V m = 15.9 nmol (h × 107cells)−1 and K i chromate = 0.3 mM. The capacity to accumulate chromium depended on the ionic species, external concentration and pH of the incubation medium. Cr(VI) or Cr(III) accumulation was negligible in the acidic (pH 3.5) culture medium, in which Cr(VI) was abiotically reduced to Cr(III). At pH 7.2 Cr(VI) was fully stable and high accumulation (>170 nmol/1 × 107 cells at 1 mM K2CrO4) was achieved; surprisingly, Cr(III) accumulation was also significant (>35 nmol/1 × 107 cells at 1 mM CrCl3). Cr(VI) was reduced by cells at pH 7.2, suggesting the presence of an external reductive activity. Cr(VI) induced an increased cysteine and glutathione content, but not in phytochelatins suggesting that chromium accumulation was mediated by monothiol compounds.  相似文献   

18.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

19.
The contamination of soil and wastewaters with Cr(VI) is a major problem. It has been suggested that microbial methods for Cr(VI) reduction are better than chemical methods, as they do not add other ions or toxic chemicals to the environment. In this study an aerobic reduction of Cr(VI) to Cr(III) by employing mixed Pseudomonas cultures isolated from a marshy land has been reported. The role of chromium concentration, temperature, pH and additives on the microbial reduction of Cr(VI) has been investigated. NADH was found to enhance the rate of reduction of Cr(VI). Complete reduction of chromium(VI) has been possible even at chromium(VI) concentrations of 300 ppm. Ions like SO(4)(2-) and poly-phenols inhibited the metabolic activity relating to Cr(VI) reduction. Under optimal conditions 100 mg/L of Cr(VI) was completely reduced within 180 min.  相似文献   

20.
Batch and continuous cultures of Pseudomonas fluorescens LB300 were shown to reduce hexavalent chromium, Cr(VI), aerobically at neutral pH (pH 7.0) with citrate as carbon and energy source. The product of Cr(VI) reduction was previously shown and confirmed in this work to be trivalent chromium, Cr(III), by quantitative reoxidation to Cr(VI) with KMnO4. In separate batch cultures (100 ml) containing initial Cr(VI) concentrations of 314.0, 200.0 and 112.5 mg Cr(VI) L–1, the organism reduced 61%, 69% and 99.7% of the Cr(VI), respectively. In a comparison of stationary and shaken cultures, the organism reduced 81% of Cr(VI) in 147 h in stationary culture and 80% in 122 h in shaken culture. In continuous culture, the organism lowered the influent Cr(VI) concentration by 28% with an 11.7-h residence time, by 39% with a 20.8-h residence time and by 57% with a 38.5-h residence time. A mass balance of chromium in a continuous culture at steady state showed an insignificant uptake of chromium by cells of P. fluorescens LB300. Correspondence to: P. C. DeLeo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号