首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Glycation is an important reaction in the regulation of physiological state. When poorly controlled, however, glycation can also result in the accumulation of glycated proteins (advanced glycation endproducts; AGEs) in the body. This AGE accumulation is termed glycative stress, and is an established pathological factor: to date, glycative stress has been closely associated with not only kidney diseases, but also kidney aging. Accumulating evidence demonstrates that the progression of renal tubular damage and tubular aging are often correlated with activation of the receptor for the AGE (RAGE)-AGE pathway or decreased activity of glyoxalase 1, which is an anti-glycation enzyme to lower glycative stress. Further, glycative stress exacerbates the derangement of protein homeostasis: the posttranslationally modified proteins by glycation often lose or gain their functions. Such deranged protein homeostasis leads to endoplasmic reticulum (ER) stress, a state of ER dysfunction in which the quality control of proteins is defective, as well as to induction of its stress signal, the unfolded protein response (UPR), in the kidney. The lowering of glycative stress via modulation of RAGE-AGE axis or glyoxalase 1 activity is beneficial for tubular homeostasis and the subsequent prevention and treatment of kidney disease, suggesting the possibility of novel therapeutic approaches which target glycative stress. In this review, we focused on the impact of glycative stress in the kidney, especially the role of RAGE and glyoxalase 1. Further we also discuss the crosstalk between glycative stress and ER stress in their effect on protein homeostasis.  相似文献   

2.
Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions. However, mice that consumed the lower vs. higher GI diet had significantly reduced frequency (P < 0.02) and severity (P < 0.05) of hallmark age-related retinal lesions such as basal deposits. Consuming higher GI diets was associated with > 3 fold higher accumulation of advanced glycation end products (AGEs) in retina, lens, liver, and brain in the age-matched mice, suggesting that higher GI diets induce systemic glycative stress that is etiologic for lesions. Data from live cell and cell-free systems show that the ubiquitin-proteasome system (UPS) and lysosome/autophagy pathway [lysosomal proteolytic system (LPS)] are involved in the degradation of AGEs. Glycatively modified substrates were degraded significantly slower than unmodified substrates by the UPS. Compounding the detriments of glycative stress, AGE modification of ubiquitin and ubiquitin-conjugating enzymes impaired UPS activities. Furthermore, ubiquitin conjugates and AGEs accumulate and are found in lysosomes when cells are glycatively stressed or the UPS or LPS/autophagy are inhibited, indicating that the UPS and LPS interact with one another to degrade AGEs. Together, these data explain why AGEs accumulate as glycative stress increases.  相似文献   

3.
4.
Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against Nε-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when 125I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of 125I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.  相似文献   

5.
Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.  相似文献   

6.
Advanced glycation end products (AGEs) are implicated in the development of diabetic complications via the receptor for AGEs (RAGE). We have reported that the 3-hydroxypyridinium (3HP)-containing AGEs derived from α-hydroxyaldehydes physically interact with RAGE and show cytotoxicity. Lactaldehyde (LA) is formed from a reaction between threonine and myeloperoxidase, but no LA-derived AGEs have been characterized. Here, we identify the structure and physiological effects of an AGE derived from LA. We isolated a novel 3HP derivative, 2-acetamido-6-(3-hydroxy-5-methyl-pyridin-1-ium-1-yl)hexanoate, named as N-acetyl-LAPL (lactaldehyde-derived pyridinium-type lysine adduct), from a mixture of LA with Nα-acetyl-L-lysine. LAPL was also detected in the LA-modified protein. LAPL elicited toxicity in PC12 neuronal cells, but the effect was suppressed by the soluble form of RAGE as a decoy receptor. Moreover, surface plasmon resonance-based analysis revealed that LAPL specifically binds to recombinant RAGE. These results indicate that LA generates an AGE containing the 3HP moiety and contributes to RAGE-dependent cytotoxicity.

Abbreviations: AGEs: advanced glycation end products; RAGE: receptor for advanced glycation end products; 3HP: 3-hydroxypyridinium; LA: lactaldehyde; LAPL: lactaldehyde-derived pyridinium-type lysine adduct; BSA: bovine serum albumin; GLAP: glyceraldehyde-derived pyridinium; MPO: myeloperoxidase; HFBA: heptafluorobutyric acid; TFA: trifluoroacetic acid; HPLC: high performance liquid chromatography; LC-ESI-QTOF-MS: liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry; NMR: nuclear magnetic resonance; LA-BSA: lactaldehyde-modified bovine serum albumin; PBS: phosphate buffered saline, GST, glutathione S-transferase; SPR: surface plasmon resonance; OP-lysine: 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate; GLO1: glyoxalase 1; MG, methylglyoxal  相似文献   


7.
Dihydroxyacetone (DHA) induces the formation of advanced glycation endproducts (AGEs), which are involved in several diseases. Earlier, we identified dihydroxyacetone kinase 1 (Dak1) as a candidate glutathione peroxidase 3 (Gpx3)-interacting protein in Saccharomyces cerevisiae. This finding is noteworthy, as no clear evidence on the involvement of oxidative stress systems in DHA-induced AGE formation has been found to date. Here, we demonstrate that Gpx3 interacts with Dak1, alleviates DHA-mediated stress by upregulating Dak activity, and consequently suppresses AGE formation. Based on these results, we propose that defense systems against oxidative stress and DHA-induced AGE formation are related via interactions between Gpx3 and Dak1.  相似文献   

8.
Studies have established hyperglycemia as the most important factor in the progress of vascular complications. Formation of advanced glycation end products (AGEs) correlates with glycemic control. The AGE hypothesis proposes that hyperglycemia contributes to the pathogenesis of diabetic complications including retinopathy. However, their role in diabetic retinopathy remains largely unknown. This review discusses the chemistry of AGEs formation and their patho-biochemistry particularly in relation to diabetic retinopathy. AGEs exert deleterious effects by acting directly to induce cross-linking of long-lived proteins to promote vascular stiffness, altering vascular structure and function and interacting with receptor for AGE, to induce intracellular signaling leading to enhanced oxidative stress and elaboration of key proinflammatory and prosclerotic cytokines. Novel anti-AGE strategies are being developed hoping that in next few years, some of these promising therapies will be successfully evaluated in clinical context aiming to reduce the major economical and medical burden caused by diabetic retinopathy.  相似文献   

9.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.  相似文献   

10.
《Free radical research》2013,47(8):49-69
Abstract

Reactive derivatives of non-enzymatic glucose-protein condensation reactions integrate a heterogeneous group of irreversible adducts called advanced glycation end-products (AGEs). Numerous studies have investigated the role of the AGEs in cardiovascular system; however, its contribution to erectile dysfunction (ED) that is an early manifestation of cardiovascular disease has been less intensively investigated. This review summarizes the most recent advances concerning AGEs effects in the cavernous tissue of the penis and in ED onset, particularly on diabetes and aging, conditions that not only favor AGEs formation, but also increase risk of developing ED. The specific contribution of AGE on intra- and extracellular deposition of insoluble complexes, interference in activity of endothelial nitric oxide (NO) synthase, NO bioavailability, endothelial-dependent vasodilatation, as well as molecular pathways activated by receptor of AGEs are presented. Finally, the interventional actions that prevent AGEs formation, accumulation or activity in the cavernous tissue and that include nutritional pattern modulation, nutraceuticals, exercise, therapeutic strategies (statins, anti-diabetics, inhibitors of phosphodiesterase-5, anti-hypertensive drugs) and inhibitors of AGEs formation and crosslink breakers, are discussed. From this review, we conclude that despite the experiments conducted in animal models pointing to the AGE/RAGE axis as a potential interventional target with respect to ED associated with diabetes and aging, the clinical data have been very disappointing and, until now, did not provide evidence of benefits of treatments directed to AGE inactivation.  相似文献   

11.
Advanced-glycation end products (AGEs) were recently implicated in vascular calcification, through a process mediated by RAGE (receptor for AGEs). Although a correlation between AGEs levels and vascular calcification was established, there is no evidence that reducing in vivo AGEs deposition or inhibiting AGEs-RAGE signaling pathways can decrease medial calcification. We evaluated the impact of inhibiting AGEs formation by pyridoxamine or elimination of AGEs by alagebrium on diabetic medial calcification. We also evaluated if the inhibition of AGEs-RAGE signaling pathways can prevent calcification. Rats were fed a high fat diet during 2 months before receiving a low dose of streptozotocin. Then, calcification was induced with warfarin. Pyridoxamine was administered at the beginning of warfarin treatment while alagebrium was administered 3 weeks after the beginning of warfarin treatment. Results demonstrate that AGEs inhibitors prevent the time-dependent accumulation of AGEs in femoral arteries of diabetic rats. This effect was accompanied by a reduced diabetes-accelerated calcification. Ex vivo experiments showed that N-methylpyridinium, an agonist of RAGE, induced calcification of diabetic femoral arteries, a process inhibited by antioxidants and different inhibitors of signaling pathways associated to RAGE activation. The physiological importance of oxidative stress was demonstrated by the reduction of femoral artery calcification in diabetic rats treated with apocynin, an inhibitor of reactive oxygen species production. We demonstrated that AGE inhibitors prevent or limit medial calcification. We also showed that diabetes-accelerated calcification is prevented by antioxidants. Thus, inhibiting the association of AGE-RAGE or the downstream signaling reduced medial calcification in diabetes.  相似文献   

12.
《Free radical research》2013,47(8):28-38
Abstract

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.  相似文献   

13.
Excessive formation of advanced glycation end-products (AGEs) presents the most important mechanism of metabolic memory that underlies the pathophysiology of chronic diabetic complications. Independent of the level of hyperglycaemia, AGEs mediate intracellular glycation of the mitochondrial respiratory chain proteins leading to excessive production of reactive oxygen species (ROS) and amplification of their formation. Additionally, AGEs trigger intracellular damage via activation of the receptor for AGEs (RAGE) signalling axis that leads to elevation of cytosolic ROS, nuclear factor kappaB (NF-κB) activation, increased expression of adhesion molecules and cytokines, induction of oxidative and endoplasmic reticulum stress. Recent studies have identified novel microRNAs (miRNAs) involved in the regulation of AGE/RAGE signalling in the context of diabetic micro- and macrovascular complications. The aim of this review is to discuss the emerging role of miRNAs on AGE/RAGE pathway and the potential use of several miRNAs as novel therapeutic targets.  相似文献   

14.
Tendinopathy is a challenging complication observed in patients with diabetes mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and even ruptured tendons. Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes, including disorganized arrangement of collagen fibers, microtears, calcium nodules, and advanced glycation end product (AGE) deposition. Tendon-derived stem/ progenitor cells (TSPCs) were found to maintain hemostasis and to participate in the reversal of tendinopathy. We also discovered the aberrant osteochondrogenesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear. In this review, we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo.  相似文献   

15.
The development of obesity-associated complications is related to various pathogenic events including chronic inflammation, oxidative stress and generation of advanced glycation end products (AGEs). Due to their antioxidant, anti-inflammatory and antiglycation properties, trigonelline and curcumin are interesting candidates to counteract complications of obesity and diabetes mellitus. The current study aimed to investigate the effects of treatment with curcumin or trigonelline mixed into yoghurt, alone or in combination, on mice fed high-fat diet (HFD); the focus was mainly on the potential of these phytochemicals to counteract oxidative and glycative stress. Yoghurt alone improved glucose tolerance and reduced proinflammatory cytokine levels in HFD mice; however, it did not affect the antioxidant status. Trigonelline-enriched yoghurt prevented fat accumulation in adipose tissue, improved both insulin sensitivity and glucose tolerance and exerted anti-inflammatory and antiglycation activities (reduced AGEs and AGE receptor levels and increased the levels of components related to AGE detoxification) in liver and kidney of HFD mice. Curcumin-enriched yoghurt exerted anti-inflammatory and potent antioxidant properties (increased antioxidant enzyme activities and decreased lipid peroxidation) in liver and kidney of HFD mice. However, several beneficial effects were nullified when trigonelline and curcumin were administered in combination. Trigonelline and curcumin have emerged as promising complementary therapy candidates for liver and kidney complications associated with obesity. However, the administration of these phytochemicals in combination, at least in HFD mice, was not effective; inhibition of biotransformation processes and/or the reaching of toxic doses during combined treatment may be prevailing over the individual pharmacodynamic actions of these phytochemicals.  相似文献   

16.
The advanced stage of the glycation process (also called the "Maillard reaction") that leads to the formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. AGEs elicit a wide range of cell-mediated responses that might contribute to diabetic complications, vascular disease, renal disease, and Alzheimer's disease. Recently, it has been proposed that AGE are not only created from glucose per se, but also from dicarbonyl compounds derived from glycation, sugar autoxidation, and sugar metabolism. However, this advanced stage of glycation is still only partially characterized and the structures of the different AGEs that are generated in vivo have not been completely determined. Because of their heterogeneity and the complexity of the chemical reactions involved, only some AGEs have been characterized in vivo, including N-carboxymethyllysine (CML), pentosidine, pyrraline, and crosslines. In this article, we provide a brief overview of the pathways of AGE formation and of the immunochemical methods for detection of AGEs, and we also provide direct immunological evidence for the existence of five distinct AGE classes (designated as AGE-1 to -5) within the AGE-modified proteins and peptides in the serum of diabetic patients on hemodialysis. We also propose pathways for the in vivo formation of various AGEs by glycation, sugar autoxidation, and sugar metabolism.  相似文献   

17.
Coronary artery disease remains the leading cause of mortality in adult diabetic population with however, a high predominance also in non-diabetic subjects. In search of common molecular mechanisms and metabolic by-products with potential pathogenic role, increased advanced glycation end products (AGEs) present a critical biomarker for CAD development in both cases. Interaction of AGEs with their transmembrane cell receptor, RAGE in endothelial and smooth muscle cells as well as in platelets, activates intracellular signaling that leads to endothelial injury, modulation of vascular smooth muscle cell function and altered platelet activity. Furthermore, tissue accumulation of AGEs affects current treatment approaches being involved in stent restenosis. The present review provides an update of AGE-induced molecular mechanisms involved in CAD pathophysiology while it discusses emerging therapeutic interventions targeting AGE reduction and AGE-RAGE signaling with beneficial clinical outcome.  相似文献   

18.
高级糖化终末产物(advanced glycation end product,AGE)参与了糖尿病、动脉粥样硬化、癌症等多种疾病的发生和发展,尤其是其导致的糖尿病肾病(diabetic nephropathy,DN)是终末期肾衰竭的主要病因,因此探索以AGEs为靶点的DN治疗手段成为了国内外研究的热点。本文概述了国内外关于AGE参与DN的发病机制,靶向AGE的DN治疗策略,以及天然中药基于AGE为靶点干预DN的研究进展,初步探讨了靶向AGE的DN天然药物的筛选模型。  相似文献   

19.
Cardiovascular diseases represent the main cause of mortality in the industrialized world and the identification of effective preventive strategies is of fundamental importance. Sulforaphane, an isothiocyanate from cruciferous vegetables, has been shown to up-regulate phase II enzymes in cardiomyocytes and counteract oxidative stress-induced apoptosis. Aim of the present study was the identification and characterization of novel sulforaphane targets in cardiomyocytes applying a proteomic approach. Two-dimensional gel electrophoresis and mass spectrometry were used to generate protein profiles of primary neonatal rat cardiomyocytes treated and untreated with 5 µM sulforaphane for 1-48 h. According to image analysis, 64 protein spots were found as differentially expressed and their functional correlations were investigated using the MetaCore program. We mainly focused on 3 proteins: macrophage migration inhibitory factor (MIF), CLP36 or Elfin, and glyoxalase 1, due to their possible involvement in cardioprotection. Validation of the time-dependent differential expression of these proteins was performed by western blotting. In particular, to gain insight into the cardioprotective role of the modulation of glyoxalase 1 by sulforaphane, further experiments were performed using methylglyoxal to mimic glycative stress. Sulforaphane was able to counteract methylglyoxal-induced apoptosis, ROS production, and glycative stress, likely through glyoxalase 1 up-regulation. In this study, we reported for the first time new molecular targets of sulforaphane, such as MIF, CLP36 and glyoxalase 1. In particular, we gave new insights into the anti-glycative role of sulforaphane in cardiomyocytes, confirming its pleiotropic behavior in counteracting cardiovascular diseases.  相似文献   

20.
Advanced glycation end products (AGEs) are produced by the non-enzymatic glycation of proteins and lipids. AGE levels are pathologically elevated in a number of inflammatory diseases and in diabetes mellitus. There is evidence that AGEs, acting through the receptor for AGEs, contribute to diabetic complications. Nephropathy is a major complication of diabetes mellitus. However, the initiating molecular events that trigger diabetic renal disease are unknown. Renal mesangial cells produce excess extracellular matrix in response to treatment with transforming growth factor-beta, and excess mesangial cell matrix production, by impairing glomerular filtration, contributes to diabetic nephropathy. AGEs are known to trigger the autocrine production and release of transforming growth factor-beta. However, it is unclear how AGEs signal in mesangial cells. Here we show that treatment of mesangial cells with AGEs and with the receptor for AGEs agonist S100 triggers activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) pathways. AGEs trigger the GTP loading of mesangial cell Ras, and AGE activation of ERK requires Ras. We observe that Ki-Ras, but not Ha-Ras, is the target of AGE action. Surprisingly, inhibition of PI3K blocks both ERK and Ki-Ras activation. We also observe that activation of ERK and the PI3K target kinase protein kinase-B is blocked with free radical scavengers, indicating a role for reactive oxygen species in AGE recruitment of PI3K. Thus, AGEs signal to Ki-Ras and ERK through reactive oxygen species-dependent activation of PI3K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号