首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bovine milk is by far the most commonly consumed milk in the western world. The protein composition in milk consists of casein and whey proteins, of which β-lactoglobulin (BLG) is the principal constituent of the latter. Here we provide biochemical evidence that this milk protein, in purified form and in pasteurized store-bought milk, promotes the formation of cycloretinal (all-trans retinal dimer), and a variety of other cycloterpenals of biological relevance [Fishkin et al., Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 7091-7096; Fishkin et al., Chirality, 2004, 16, 637-641; Kim et al., Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19273-19278]. Cycloretinal is an eye metabolite and among several toxic byproducts of the visual cycle firmly established to cause age-related macular degeneration. Experiments in rabbits further demonstrate that BLG/milk can survive the digestive system and promote this reaction in vivo [Caillard et al., Am. J. Physiol., 1994, 266(6), G1053-G1059]. Proteomic studies on age-related macular degeneration patients have detected BLG in the eye of these patients further suggesting that this milk protein could contribute to disease progression [Crabb et al., Proc. Natl. Acad. Sci. U. S. A., 2002, 99(23), 14682-14687].  相似文献   

3.
Toluene-treated Escherichia coli can synthesize DNA in the presence of precursors and ATP [Moses, R.E. & Richardson, C.C. (1970) Proc. Natl Acad. Sci. U.S.A. 67, 674--681]. The replacement of ATP by another NTP or dNTP leads to the premature arrest of the reaction. Residual synthesis in the presence of an NTP or dNTP other than ATP differs from the complete reaction in the presence of ATP because it is less sensitive to nalidixic acid and novobiocin and because its maximal activity can be obtained with lower concentrations of dNTP or shorter times of toluene treatment. However, like the complete reaction, residual synthesis occurs at the replication fork pre-existing in vivo at the time of toluenization, produces short and long pieces of DNA, is inhibited by arabinosyl-adenine triphosphate, azide or mitomycin C, and is dependent on the dnaE, DNAB and dnaG gene products. We conclude from these data that ATP is specifically required for a step in DNA replication which involves the activity of DNA gyrase, the target of nalidixic acid and novobiocin [Higgins, N.P., Peebles, C.L., Sugino, A. & Cozzarelli, N.R. (1978) Proc. Natl Acad. Sci. U.S.A. 75, 1773-1777]. In the absence of DNA gyrase activity, short DNA pieces are formed and sealed but only a limited amount of the chromosome can be replicated (residual synthesis). In the presence of DNA gyrase activity, DNA synthesis can occur on a longer portion of the chromosome (complete synthesis).  相似文献   

4.
Signal sequence of alkaline phosphatase of Escherichia coli.   总被引:16,自引:9,他引:7       下载免费PDF全文
The amino acid sequence of the signal sequence of phoA was determined by DNA sequencing by using the dideoxy chain termination technique (Sanger et al., Proc. Natl. Acad. Sci. U.S.A. 74:5463-5467, 1977). The template used was single-stranded DNA obtained from M13 on f1 phage derivatives carrying phoA, constructed by in vitro recombination. The results confirm the sequence of the first five amino acids determined by Sarthy et al. (J. Bacteriol. 139:932-939, 1979) and extend the sequence in the same reading frame into the amino terminal region of the mature alkaline phosphatase (Bradshaw et al., Proc. Natl. Acad. Sci. U.S.A., 78:3473-3477, 1981). As was predicted (Inouye and Beckwith, Proc. Natl. Acad. Sci. U.S.A. 74:1440-1444, 1977), the signal sequence was highly hydrophobic. The alteration of DNA sequence was identified for a promoter mutation that results in the expression of phoA independent of the positive control gene phoB and in insensitivity to high phosphate.  相似文献   

5.
Amino acid-amino acid interaction energies have been derived from crystal structure data for a number of years. Here is reported the first derivation of normalized relative interaction from binding data for each of the four bases interacting with a specific amino acid, utilizing data from combinatorial multiplex DNA binding of zinc finger domains [Desjarlais, J. R. and Berg, J. M. (1994) Proc. Natl. Acad. Sci. USA, 91, 11099-11103]. The five strongest interactions are observed for lysine-guanine, lysine-thymine, arginine-guanine, aspartic acid-cytosine and asparagine-adenine. These rankings for interactions with the four bases appear to be related to base-amino acid partial charges. Also, similar normalized relative interaction energies are derived by using DNA binding data for Cro and lambda repressors and the R2R3 c-Myb protein domain [Takeda, Y., Sarai, A. and Rivera, V. M. (1989) Proc. Natl. Acad. Sci. USA, 86, 439-443; Sarai, A. and Takeda, Y. (1989) Proc. Natl. Acad. Sci. USA, 86, 6513-6517; Ogata, K. et al. (1995) submitted]. These energies correlate well with the combinatorial multiplex energies, and the strongest cases are similar between the two sets. They also correlate well with similar relative interaction energies derived directly from frequencies of bases in the bacteriophage lambda operator sequences. These results suggest that such potentials are general and that extensive combinatorial binding studies can be used to derive potential energies for DNA-protein interactions.  相似文献   

6.
A natural mutation at codon 151 (Gln --> Met; Q151M) of HIV-1 RT has been shown to confer resistance to the virus against dideoxy nucleoside analogues [Shirasaka, T., et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 2398], suggesting that Gln 151 may be involved in conferring sensitivity to nucleoside analogues. To understand its functional implication, we generated two mutant derivatives of this residue (Q151M and Q151N) and examined their sensitivities to ddNTPs and their ability to discriminate against rNTPs versus dNTP substrates on natural U5-PBS HIV-1 RNA template. We found that Q151M was highly discriminatory against all four ddNTPs but was able to incorporate rNTPs as efficiently as the wild type enzyme. In contrast, the Q151N mutant was only moderately resistant to ddNTPs but exhibited a higher level of discrimination against rNTPs. The fidelity of misinsertion was found to be highest for the Q151N mutant followed by Q151M and the wild type enzyme. These results point toward the importance of the amino acid side chain at position 151 in influencing the ability of the enzyme in recognition and discrimination against the sugar moieties of nucleotide substrates.  相似文献   

7.
Horizontal gene transfer in microbial genome evolution   总被引:1,自引:0,他引:1  
Horizontal gene transfer is the collective name for processes that permit the exchange of DNA among organisms of different species. Only recently has it been recognized as a significant contribution to inter-organismal gene exchange. Traditionally, it was thought that microorganisms evolved clonally, passing genes from mother to daughter cells with little or no exchange of DNA among diverse species. Studies of microbial genomes, however, have shown that genomes contain genes that are closely related to a number of different prokaryotes, sometimes to phylogenetically very distantly related ones. (Doolittle et al., 1990, J. Mol. Evol. 31, 383-388; Karlin et al., 1997, J. Bacteriol. 179, 3899-3913; Karlin et al., 1998, Annu. Rev. Genet. 32, 185-225; Lawrence and Ochman, 1998, Proc. Natl. Acad. Sci. USA 95, 9413-9417; Rivera et al., 1998, Proc. Natl. Acad. Sci. USA 95, 6239-6244; Campbell, 2000, Theor. Popul. Biol. 57 71-77; Doolittle, 2000, Sci. Am. 282, 90-95; Ochman and Jones, 2000, Embo. J. 19, 6637-6643; Boucher et al. 2001, Curr. Opin., Microbiol. 4, 285-289; Wang et al., 2001, Mol. Biol. Evol. 18, 792-800). Whereas prokaryotic and eukaryotic evolution was once reconstructed from a single 16S ribosomal RNA (rRNA) gene, the analysis of complete genomes is beginning to yield a different picture of microbial evolution, one that is wrought with the lateral movement of genes across vast phylogenetic distances. (Lane et al., 1988, Methods Enzymol. 167, 138-144; Lake and Rivera, 1996, Proc. Natl. Acad. Sci. USA 91, 2880-2881; Lake et al., 1999, Science 283, 2027-2028).  相似文献   

8.
The DNA polymerase and primase activities of the intact DNA polymerase alpha from early embryos of Drosophila melanogaster co-sediment in native glycerol gradients. However, the activities are separated in glycerol gradients containing 2.8 M urea after treatment of the enzyme with 3.4 M urea. The 182,000-dalton alpha subunit which is required for DNA polymerase activity (Kaguni, L.S., Rossignol, J.-M., Conaway, R. C., and Lehman, I.R. (1983) Proc. Natl. Acad. Sci. U. S.A. 80, 2221-2225) is not required for DNA primase activity. Instead, primase activity resides in the 60,000-dalton (beta) and/or the 50,000-dalton (gamma) subunit. Neither polymerase nor primase has been found in association with the 73,000-dalton polypeptide which co-purifies with the intact enzyme.  相似文献   

9.
A comparison of DNA polymerase III core enzyme (McHenry, C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) prepared from wild type Escherichia coli and a strain harboring the mutator gene, mutD5 (Degnen, G. E., and Cox, E. C. (1974) J. Bacteriol. 17, 477-487) has revealed several differences in their properties. Among these are alterations in the heat stability, divalent cation requirement, pH optimum, 3'----5'-single strand exonuclease activity, and DNA-dependent conversion of a deoxynucleoside triphosphate to its corresponding monophosphate ("turnover"). The decrease in the 3'-single strand exonuclease and turnover indicate a defect in the editing function of the mutD strain, which is at least in part responsible for the high spontaneous mutation rate in mutD. Transformation of mutD by a hybrid plasmid, pRD3, constructed from an EcoRI restriction fragment of E. coli and pBR322, cures mutD of its abnormally high mutation rate, and simultaneously restores its 3'-exonuclease activity. These observations are consistent with the notion that the mutD gene product is a subunit of DNA polymerase III, and it either contains the catalytic site for the 3'-exonuclease or modulates its activity. From a consideration of the known molecular weights of the subunits in DNA polymerase III core (McHenry C. S., and Crow, W. (1979) J. Biol. Chem. 254, 1748-1753) the molecular weights of the two proteins translated in maxicells transformed with pRD3, and from a comparison of our results with those obtained with the mutator dnaQ (Horiuchi, T., Maki, H., Maruyama, M., and Sekiguchi, M. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 3770-3774) and the work of Cox and Horner (Cox, E. C., and Horner, D. L. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2295-2299) as well as Echols et al. (Echols, H., Lu, C., and Burgers, P. M. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2189-2192) we tentatively assign the mutD gene product to the epsilon subunit of DNA polymerase III.  相似文献   

10.
P Coffino 《Gene》1988,69(2):365-368
Messenger RNAs that have structurally unusual 5' leaders attract interest and provoke conjecture. Cloning and sequencing of two rodent ornithine decarboxylase (ODC) cDNAs, those for mouse [Kahana and Nathans, Proc. Natl. Acad. Sci. USA 82 (1985) 1673-1677] and, recently as published in this journal, for rat [Van Kranen et al., Gene 60 (1987) 145-155], have indicated the presence of such features. In both cases, the leader is unusually long and contains multiple AUG start codons preceding that which encodes the N terminus of the protein. In addition, the leader of the rat clone contains a 54-nt perfect inverted repeat. Because ODC expression appears to be regulated translationally, functional implications immediately suggest themselves. Certain unusual features of the mouse cDNA have proven artefactual [Brabant et al., Proc. Natl. Acad. Sci. USA 85 (1988) 2200-2204; Katz and Kahana, J. Biol. Chem. 263 (1988) 7604-7609]. It is likely that the putative leader sequence of rat ODC cDNA also resulted from a cloning artefact.  相似文献   

11.
The crystal structure of the cyano-met form of Mt-trHbO revealed two unusual distal residues Y(CD1) and W(G8) forming a hydrogen-bond network with the heme-bound ligand [Milani, M., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5766-5771]. W(G8) is an invariant residue in group II and group III trHbs and has no counterpart in other globins. A previous study reported that changing Y(CD1) for a Phe causes a significant increase in the O2 combination rate, but almost no change in the O2 dissociation rate [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Here we investigated the role of the W(G8) in ligand binding by using resonance Raman spectroscopy, stopped-flow spectrophotometry, and X-ray crystallography. For this purpose, W(G8) was changed, by site-directed mutagenesis, to a Phe in both the wild-type protein and the mutant Y(CD1)F to create the single mutant W(G8)F and the double mutant Y(CD1)F/W(G8)F, respectively. Resonance Raman results suggest that W(G8) interacts with the heme-bound O2 and CO, as evidenced by the increase of the Fe-O2 stretching mode from 559 to 564 cm-1 and by the lower frequency of the Fe-CO stretching modes (514 and 497 cm-1) compared to that of the wild-type protein. Mutation of W(G8) to Phe indicates that this residue controls ligand binding, as evidenced by a dramatic increase of the combination rates of both O2 and CO. Also, the rate of O2 dissociation showed a 90-1000-fold increase in the W(G8)F and Y(CD1)F/W(G8)F mutants, that is in sharp contrast with the values obtained for the other distal mutants Y(B10)F and Y(CD1)F [Ouellet, H., et al. (2003) Biochemistry 42, 5764-5774]. Taken together, these data indicate a pivotal role for the W(G8) residue in O2 binding and stabilization.  相似文献   

12.
Genes encoding the mosquito larvicidal toxins Cry4Aa, Cry11Aa, Cyt1Aa and the regulatory P20 from Bacillus thuringiensis subsp. israelensis were introduced into the nitrogen-fixing, filamentous cyanobacterium Anabaena PCC 7120 for expression under control of two strong promoters P(psbA) and P(A1). The clone pRVE4-ADRC displayed toxicity against fourth-instar larvae of Aedes aegypti, the highest ever achieved in cyanobacteria. It was about 2.5-fold more toxic than the respective clone without cyt1Aa [Wu et al., Appl. Environ. Microbiol. 63 (1997) 4971-4975]. Cyt1Aa synergized the combination of Crys by about five-fold. Consistently, the lethal times exerted by pRVE4-ADRC were also reduced (it killed exposed larvae more quickly). This clone may become a useful biological control agent which reduces the probability of resistance development in the target organisms [Wirth et al., Proc. Natl. Acad. Sci. USA 94 (1997) 10536-10540].  相似文献   

13.
Comment on: Parkhitko A, et al. Proc Natl Acad Sci USA 2011;108:12455-60.  相似文献   

14.
Approximately 30% of human tumors examined for mutations in polymerase beta (pol beta) appear to express pol beta variant proteins (D. Starcevic, S. Dalal, and J. B. Sweasy, Cell Cycle 3:998-1001, 2004). Many of these variants result from a single amino acid substitution. We have previously shown that the K289M and I260M colon and prostate cancer variants, respectively, induce cellular transformation most likely due to sequence-specific mutator activity (S. Dalal et al., Biochemistry 44:15664-15673, 2005; T. Lang et al., Proc. Natl. Acad. Sci. USA 101:6074-6079, 2004; J. B. Sweasy et al., Proc. Natl. Acad. Sci. USA 102:14350-14355, 2005). In the work described here, we show that the E295K gastric carcinoma pol beta variant acts in a dominant-negative manner by interfering with base excision repair. This leads to an increase in sister chromatid exchanges. Expression of the E295K variant also induces cellular transformation. Our data suggest that unfilled gaps are channeled into a homology-directed repair pathway that could lead to genomic instability. The results indicate that base excision repair is critical for maintaining genome stability and could therefore be a tumor suppressor mechanism.  相似文献   

15.
The X-ray crystal structure of human soluble epoxide hydrolase (sEH) has been determined at 2.6 A resolution, revealing a domain-swapped quaternary structure identical to that observed for the murine enzyme [Argiriadi, M. A., Morisseau, C., Hammock, B. D., and Christianson, D. W. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 10637-10642]. As with the murine enzyme, the epoxide hydrolytic mechanism of the human enzyme proceeds through an alkyl-enzyme intermediate with Asp-333 in the C-terminal domain. The structure of the human sEH complex with N-cyclohexyl-N'-(iodophenyl)urea (CIU) has been determined at 2.35 A resolution. Tyr-381 and Tyr-465 donate hydrogen bonds to the alkylurea carbonyl group of CIU, consistent with the proposed roles of these residues as proton donors in the first step of catalysis. The N-terminal domain of mammalian sEH contains a 15 A deep cleft, but its biological function is unclear. Recent experiments demonstrate that the N-terminal domain of human sEH catalyzes the metal-dependent hydrolysis of phosphate esters [Cronin, A., Mowbray, S., Dürk, H., Homburg, S., Fleming, I., Fisslthaler, B., Oesch, F., and Arand, M. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1552-1557; Newman, J. W., Morisseau, C., Harris, T. R., and Hammock, B. D. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 1558-1563]. The binding of Mg(2+)-HPO4(2-) to the N-terminal domain of human sEH in its CIU complex reveals structural features relevant to those of the enzyme-substrate complex in the phosphatase reaction.  相似文献   

16.
Base excision repair (BER) is an essential DNA repair pathway since it processes spontaneous (endogenous) DNA damage such as abasic sites, oxidized and alkylated bases, as well as mismatches arising from deamination of cytosine and 5-methylcytosine. Some of these lesions are repaired by the exchange of a single deoxynucleotide [Dianov, G. et al. (1992) Mol. Cell. Biol. 12, 1605-1612; Wiebauer, K. and Jiricny, J. (1990) Proc. Natl. Acad. Sci. USA, 87, 5842-5845] or a few deoxynucleotides [Matsumoto, Y. et al. (1994) Mol. Cell. Biol., 14 6187-6197]. Here we report that DNA single strand breaks induced by hyperthermic conditions are repaired with an average patch size of approximately 36 nt in Xenopus laevis egg lysates.  相似文献   

17.
The P3HR-1 subclone of Jijoye differs from Jijoye and from other Epstein-Barr virus (EBV)-infected cell lines in that the virus produced by P3HR-1 cultures lacks the ability to growth-transform normal B lymphocytes (Heston et al., Nature (London) 295:160-163, 1982; Miller et al., J. Virol. 18:1071-1080, 1976; Miller et al., Proc. Natl. Acad. Sci. U.S.A. 71:4006-4010, 1974; Ragona et al., Virology 101:553-557, 1980). The P3HR-1 virus was known to be deleted for a region which encodes RNA in latently infected, growth-transformed cells (Bornkamm et al., J. Virol. 35:603-618, 1980; Heller et al., J. Virol. 38:632-648, 1981; King et al., J. Virol. 36:506-518, 1980; Raab-Traub et al., J. Virol. 27:388-398, 1978; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1980). This deletion is now more precisely defined. The P3HR-1 genome contains less than 170 base pairs (and possibly none) of the 3,300-base pair U2 region of EBV DNA and is also lacking IR2 (a 123-base pair repeat which is the right boundary of U2). A surprising finding is that EBV isolates vary in part of the U2 region. Two transforming EB viruses, AG876 and Jijoye, are deleted for part of the U2 region including most or all of a fragment, HinfI-c, which encodes part of one of the three more abundant cytoplasmic polyadenylated RNAs of growth-transformed cells (King et al., J. Virol. 36:506-518, 1980; King et al., J. Virol. 38:649-660, 1981; van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934).  相似文献   

18.
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.  相似文献   

19.
We reported recently the construction of the 4.4-kb R6K-derived pMAD1 plasmid carrying supF [Stewart et al., Gene 106 (1991) 97-101] that does not share nt sequences with ColE1 and therefore permits recombination-based screening of lambda libraries that contain ColE1 sequences. Here we describe the construction of the 2.5-kb R6K-derived plasmid, pMAD3, that lacks the pi-encoding pir gene required for R6K replication. To supply pi [Inuzuka and Helinski, Proc. Natl. Acad. Sci. USA 75 (1978) 5381-5385] in trans, we employed pPR1 delta 22pir116, referred to henceforth as pPR1 [McEachern et al., Proc. Natl. Acad. Sci. USA 86 (1989) 7942-7946; Dellis and Filutowicz, J. Bacteriol. 173 (1991) 1279-1286]. Plasmid pMAD3 is small enough to be amplified readily by PCR [Saiki et al., Science 230 (1985) 1350-1354]. This permits the insertion of larger fragments and the retrieval of larger lambda inserts, as well as the use of a simplified PCR-based cloning protocol which utilizes annealing rather than ligation to create recombinants in pMAD3 [Nisson et al., PCR Methods and Applications 1 (1991) 120-123].  相似文献   

20.
Adams PD  Oswald RE 《Biochemistry》2006,45(8):2577-2583
Cdc42Hs(F28L) is a single-point mutant of Cdc42Hs, a member of the Ras superfamily of GTP-binding proteins, that facilitates cellular transformation brought about by an increased rate of cycling between GTP and GDP [Lin, R., et al. (1997) Curr. Biol. 7, 794-797]. Dynamics studies of Cdc42Hs(F28L)-GDP have shown increased flexibility for several residues at the nucleotide-binding site [Adams, P. D., et al. (2004) Biochemistry 43, 9968-9977]. The solution structure of Cdc42Hs-GDP (wild type) has previously been determined by NMR spectroscopy [Feltham, J. L., et al. (1997) Biochemistry 36, 8755-8766]. Here, we describe the solution structure of Cdc42Hs(F28L)-GDP, which provides insight into the structural basis for the change in affinity for GDP. Heteronuclear NMR experiments were performed to assign resonances in the protein, and distance, hydrogen bonding, residual dipolar coupling, and dihedral angle constraints were used to calculate a set of low-energy structures using distance geometry and simulated annealing refinement protocols. The overall structure of Cdc42Hs(F28L)-GDP is very similar to that of wild-type Cdc42Hs, consisting of a centrally located six-stranded beta-sheet structure surrounding the C-terminal alpha-helix [Feltham, J. L., et al. (1997) Biochemistry 36, 8755-8766]. In addition, the same three regions in wild-type Cdc42Hs that show structural disorder (Switch I, Switch II, and the Insert region) are disordered in F28L as well. Although the structure of Cdc42Hs(F28L)-GDP is very similar to that of the wild type, interactions with the nucleotide and hydrogen bonding within the nucleotide binding site are altered, and the region surrounding L28 is substantially more disordered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号