首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical genetic studies discovered loss of genes from the ancient sex chromosome systems of several animals (genetic degeneration), and complete genome sequencing confirms that the heterogametic sex is hemizygous for most sex-linked genes. Genetic degeneration is thought to result from the absence of recombination between the sex chromosome pair (reviewed by [1]) and is very rapid after sex chromosome-autosome fusions in Drosophila [2-4]. Plant sex chromosome systems allow study of the time course of degeneration, because they evolved from a state wholly without sex chromosomes (rather than after a large genome region fused to a preexisting sex chromosome), and, in several taxa, recombination stopped very recently. However, despite increasing genetic and physical mapping of plant nonrecombining sex-determining regions [5-8], it remains very difficult to discover sex-linked genes, and it is unclear whether Y-linked genes are losing full function. We therefore developed a high-throughput method using RNA-Seq to identify sex linkage in Silene latifolia. Recombination suppression between this plant's XY sex chromosome pair started only about 10 million years ago [9]. Our approach identifies several hundred new sex-linked genes, and we show that this young Y chromosome retains many genes, yet these already have slightly reduced gene expression and are accumulating changes likely to reduce protein functions.  相似文献   

2.
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract .  相似文献   

3.
4.
Sex determination is an intriguing system in trioecious papaya. Over the past seven decades various hypotheses, based on the knowledge and information available at the time, have been proposed to explain the genetics of the papaya's sex determination. These include a single gene with three alleles, a group of closely linked genes, a genic balance of sex chromosome over autosomes, classical XY chromosomes, and regulatory elements of the flower development pathway. Recent advancements in genomic technology make it possible to characterize the genomic region involved in sex determination at the molecular level. High density linkage mapping validated the hypothesis that predicted recombination suppression at the sex determination locus. Physical mapping and sample sequencing of the non-recombination region led to the conclusion that sex determination is controlled by a pair of primitive sex chromosomes with a small male-specific region (MSY) of the Y chromosome. We now postulate that two sex determination genes control the sex determination pathway. One, a feminizing or stamen suppressor gene, causes stamen abortion before or at flower inception while the other, a masculinizing or carpel suppressor gene, causes carpel abortion at a later flower developmental stage. Detailed physical mapping is beginning to reveal structural details about the sex determination region and sequencing is expected to uncover candidate sex determining genes. Cloning of the sex determination genes and understanding the sex determination process could have profound application in papaya production.  相似文献   

5.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

6.
Spinach is a popular vegetable native to central and western Asia. It is dioecious with a pair of nascent sex chromosomes. The difficulties of working with the non-recombining sex determination region of XY individuals have hindered the progress toward sequencing sex chromosomes of most dioecious species. Here we present important advances toward characterizing the non-recombining sex chromosomes in spinach. Of nearly 400 spinach accessions screened, we identified a single accession of spinach in which androdioecious XY individuals segregate YY spinach. The male and female genomes of the spinach cultivar Shami and USDA accession PI 664497 were sequenced at 12–17?× coverage. X-specific sequences were identified by comparing the depth of coverage differences between male and female alignments to a female draft genome. YY individuals were used as a negative control to validate X-specific markers found by depth of coverage analysis. Of 19 possible X chromosome sequences found by depth of coverage analysis, one was verified to be X-specific by a PCR-based marker, SpoX, which amplified genomic DNA from XX and XY, but not YY templates. Androdioecious XY individuals of accession PI 217425 (Cornell #9) were used to develop inbred lines, and at S7 generation, all XY individuals were androdioecious and all YY individuals were pure male. The sex reversal of the XY mutant to hermaphrodite is strong evidence that the sex chromosomes in spinach have a two-gene sex determination system. These results are crucial towards sequencing the X and Y chromosomes to advance sex chromosome research in spinach.  相似文献   

7.
Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome‐Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real‐time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y‐to‐dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and is not repeat‐dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y‐to‐dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y‐to‐dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y‐to‐dot translocation.  相似文献   

8.
The previous genetic mapping data have suggested that most of the rainbow trout sex chromosome pair is pseudoautosomal, with very small X-specific and Y-specific regions. We have prepared an updated genetic and cytogenetic map of the male rainbow trout sex linkage group. Selected sex-linked markers spanning the X chromosome of the female genetic map have been mapped cytogenetically in normal males and genetically in crosses between the OSU female clonal line and four different male clonal lines as well as in outcrosses involving outbred OSU and hybrids between the OSU line and the male clonal lines. The cytogenetic maps of the X and Y chromosomes were very similar to the female genetic map for the X chromosome. Five markers on the male maps are genetically very close to the sex determination locus ( SEX ), but more widely spaced on the female genetic map and on the cytogenetic map, indicating a large region of suppressed recombination on the Y chromosome surrounding the SEX locus. The male map is greatly extended at the telomere. A BAC clone containing the SCAR (sequence characterized amplified region) Omy - 163 marker, which maps close to SEX , was subjected to shotgun sequencing. Two carbonyl reductase genes and a gene homologous to the vertebrate skeletal ryanodine receptor were identified. Carbonyl reductase is a key enzyme involved in production of trout ovarian maturation hormone. This brings the number of type I genes mapped to the sex chromosome to six and has allowed us to identify a region on zebrafish chromosome 10 and medaka chromosome 13 which may be homologous to the distal portion of the long arm of the rainbow trout Y chromosome.  相似文献   

9.
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.  相似文献   

10.
Females and males within a species commonly have distinct reproductive roles, and the associated traits may be under perpetual divergent natural selection between the sexes if their sex‐specific control has not yet evolved. Here, we explore whether such sexually antagonistic selection can be detected based on the magnitude of differentiation between the sexes across genome‐wide genetic polymorphisms by whole‐genome sequencing of large pools of female and male threespine stickleback fish. We find numerous autosomal genome regions exhibiting intersex allele frequency differences beyond the range plausible under pure sampling stochasticity. Alternative sequence alignment strategies rule out that these high‐differentiation regions represent sex chromosome segments misassembled into the autosomes. Instead, comparing allele frequencies and sequence read depth between the sexes reveals that regions of high intersex differentiation arise because autosomal chromosome segments got copied into the male‐specific sex chromosome (Y), where they acquired new mutations. Because the Y chromosome is missing in the stickleback reference genome, sequence reads derived from DNA copies on the Y chromosome still align to the original homologous regions on the autosomes. We argue that this phenomenon hampers the identification of sexually antagonistic selection within a genome, and can lead to spurious conclusions from population genomic analyses when the underlying samples differ in sex ratios. Because the hemizygous sex chromosome sequence (Y or W) is not represented in most reference genomes, these problems may apply broadly.  相似文献   

11.
12.
Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long‐tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced‐representation genomic sequencing for 293 individuals over a 1,530‐km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.  相似文献   

13.
Sex chromosomes are highly variable in some taxonomic groups, but the evolutionary mechanisms underlying this diversity are not well understood. In terrestrial isopod crustaceans, evolutionary turnovers in sex chromosomes are frequent, possibly caused by Wolbachia, a vertically-transmitted endosymbiont causing male-to-female sex reversal. Here, we use surgical manipulations and genetic crosses, plus genome sequencing, to examine sex chromosomes in the terrestrial isopod Trachelipus rathkei. Although an earlier cytogenetics study suggested a ZZ/ZW sex chromosome system in this species, we surprisingly find multiple lines of evidence that in our study population, sex is determined by an XX/XY system. Consistent with a recent evolutionary origin for this XX/XY system, the putative male-specific region of the genome is small. The genome shows evidence of Y-linked duplications of the gene encoding the androgenic gland hormone, a major component of male sexual differentiation in isopods. Our analyses also uncover sequences horizontally acquired from past Wolbachia infections, consistent with the hypothesis that Wolbachia may have interfered with the evolution of sex determination in T. rathkei. Overall, these results provide evidence for the co-occurrence of multiple sex chromosome systems within T. rathkei, further highlighting the relevance of terrestrial isopods as models for the study of sex chromosome evolution.Subject terms: Evolutionary genetics, Genome evolution  相似文献   

14.
Tony Gamble 《Molecular ecology》2016,25(10):2114-2116
Next‐generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. 2010 ). Among the most impressive of these sequencing innovations is restriction site‐associated DNA sequencing or RAD‐seq (Baird et al. 2008 ; Andrews et al. 2016 ). RAD‐seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD‐seq data has been to identify sex‐specific genetic markers, markers found in one sex but not the other (Baxter et al. 2011 ; Gamble & Zarkower 2014 ). Sex‐specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon 1998 ; Mossman & Waser 1999 ), the management and breeding of endangered species (Taberlet et al. 1993 ; Griffiths & Tiwari 1995 ; Robertson et al. 2006 ) and sexing embryonic material (Hacker et al. 1995 ; Smith et al. 1999 ). Furthermore, sex‐specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank 2010 ; Gamble & Zarkower 2014 ). Thus, species with male‐specific markers have male heterogamety (XY) while species with female‐specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi ( 2016 ) illustrate the ease by which RAD‐seq data can generate sex‐specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD‐seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig.  1 ), Fowler & Buonaccorsi ( 2016 ) uncover shared sex‐specific markers and a conserved sex chromosome system.  相似文献   

15.
Fish have evolved a variety of sex‐determining (SD) systems including male heterogamy (XY), female heterogamy (ZW) and environmental SD. Little is known about SD mechanisms of Sebastes rockfishes, a highly speciose genus of importance to evolutionary and conservation biology. Here, we characterize the sex determination system in the sympatrically distributed sister species Sebastes chrysomelas and Sebastes carnatus. To identify sex‐specific genotypic markers, double digest restriction site – associated DNA sequencing (ddRAD‐seq) of genomic DNA from 40 sexed individuals of both species was performed. Loci were filtered for presence in all of the individuals of one sex, absence in the other sex and no heterozygosity. Of the 74 965 loci present in all males, 33 male‐specific loci met the criteria in at least one species and 17 in both. Conversely, no female‐specific loci were detected, together providing evidence of an XY sex determination system in both species. When aligned to a draft reference genome from Sebastes aleutianus, 26 sex‐specific loci were interspersed among 1168 loci that were identical between sexes. The nascent Y chromosome averaged 5% divergence from the X chromosome and mapped to reference Sebastes genome scaffolds totalling 6.9Mbp in length. These scaffolds aligned to a single chromosome in three model fish genomes. Read coverage differences were also detected between sex‐specific and autosomal loci. A PCR‐RFLP assay validated the bioinformatic results and correctly identified sex of five additional individuals of known sex. A sex‐determining gene in other teleosts gonadal soma‐derived factor (gsdf) was present in the model fish chromosomes that spanned our sex‐specific markers.  相似文献   

16.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

17.
Fifty-five specimens of Steindachneridion melanodermatum were analyzed using molecular and conventional cytogenetic tools. Two polymorphisms were found: one involving the length of nucleolar organizer regions and another involving two submetacentric chromosomes previously identified as sex chromosomes. The polymorphism was confirmed by homogeneity between male and female karyotypes. Nucleotide sequencing and physical chromosome mapping were also used to identify and characterize one class of repetitive DNA, named SmAluI-Rex3. Based on the results and literature the present study offers an update of the occurrence of sex chromosome system in this species.  相似文献   

18.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   

19.
Silene latifolia is a dioecious plant and has heteromorphic sex chromosomes: the X and Y chromosomes. The Y chromosome is the largest, and its genetic control seems to be most strict among dioecious plants. To identify the putative sex-determination elements on the Y chromosome, random amplified polymorphic DNA (RAPD) analysis was used to screen for Y chromosome specific DNA fragments, and 31 clones were successfully produced. Genomic Southern hybridization and FISH (fluorescence in situ hybridization) analyses revealed that one of the clones, #2-2, is a Y chromosome specific fragment that has a single copy on the Y chromosome. Sequence tagged site (STS)-PCR analysis also succeeded in amplifying one fragment in males and no fragments in females. Cloning and sequencing of the #2-2 flanking region using inverse PCR revealed an open reading frame (ORF) corresponding to 285 amino acids in length (ORF285), but no expression of the ORF285 gene was identified. ORF285 may be a clue to the origin of dioecy.  相似文献   

20.
睾丸决定因子基因(Testis-determining factor,TDF)位于Y染色体短臂上,它的表达产物诱导睾丸组织的发生。SRY基因(Sex-determining Region of the Y)位于Y染色体的性别决定区内,许多特征显示SRY就是TDF。我们选用与SRY基因相应的引物,用PCR技术对正常人男女各10例的基因组DNA进行扩增。将特异扩增的男性SRY基因片段重组到质粒PUC12中,得到含有中国人SRY基因片段的克隆,命名为PSY-1、PSY-2。用[~(32)p]标记重组质粒中的SRY基因片段作探针,与PCR结果进行Southern杂交,男性样品均显示特异杂交带,女性样品为阴性。用末端终止法测定克隆的SRY基因片段的全部核苷酸序列为299bp,含有SRY基因中高度保守及功能特异性区域的240bp,我们对此进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号