首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.  相似文献   

2.
3.
Retinoic acid (RA) is indispensable for morphogenesis and differentiation of several tissues, including the nervous system. The requirement of the RA receptor (RAR) isotypes alpha, beta, and gamma and the putative role of retinoid X receptor-(RXR) signaling in RA-induced neural differentiation, was analyzed. For this compound-selective retinoids and the murine embryonal carcinoma cell line PCC7, a model system for RA-dependent neural differentiation was used. The present paper shows that proliferating PCC7 cells primarily express RXRalpha and RARalpha, lower levels of RXRbeta, and barely detectable amounts of RARbeta, RARgamma, and RXRgamma. At receptor-selective concentrations, only a RARalpha or RARgamma agonist induced the typical tissue-like differentiation pattern consisting of neuronal and nonneuronal cells. Differentiation-associated processes, such as the down-regulation of Oct4, up-regulation of certain nuclear receptors and proneuronal genes, and the induction of neuronal markers could be triggered by receptor-selective concentrations of a RARalpha-, beta-, or gamma-selective agonist, although with distinct efficacy. The differences are only partially explained by the distinct RARalpha, beta, and gamma expression levels and the dissociation constants for the bound retinoids, suggesting differential requirement of RAR isotypes during the initial stages of neural differentiation of PCC7 cells.  相似文献   

4.
Retinoids have pleiotropic effects on embryonic development and are essential for spermatogenesis in the adult, where they act via nuclear retinoid receptors: retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We used immunohistochemistry to examine the cellular localization of RARs and RXRs in the rat testis from Day 13.5 postconception (13.5 dpc) until Day 8 postpartum (8 dpp), and these findings were compared with those for immature and adult testes. RARalpha and RARbeta were detected in the interstitial tissue from 14.5 dpc, with intense staining in the gonocytes from 20. 5 dpc to 8 dpp. The nuclei of all cell types stained faintly for RARgamma from 8 dpp. Immunoreactivity for RXRalpha was intense in the gonocytes from 13.5 dpc and in the Leydig cells from 16.5 dpc, and persisted throughout the period studied. RXRbeta was always detected in the Leydig cells and during a short neonatal period in the gonocytes. RXRgamma gave a faint reaction in the nuclei of all cell types from 20.5 dpc. Unexpectedly, immunostaining for all the receptors tested, except RARgamma and RXRgamma, was detected in the cytoplasmic compartment of the cells of fetal and neonatal testes, while it was found in the nuclei in immature and adult testes. In cultures of dispersed testicular cells from 3 dpp pups, retinoic acid had a dose-dependent deleterious effect on the survival of the gonocytes and, to a lesser extent, of the somatic cells. These results suggest that retinoids act on the testicular development, especially on germ cells, via RARs and/or RXRs.  相似文献   

5.
6.
7.
Mouse F9 embryocarcinoma (EC) cells constitute a well established cell-autonomous model system for investigating retinoid signaling in vitro as, depending on culture conditions, retinoic acid (RA) can induce their differentiation into either primitive, parietal or visceral extraembryonic endoderm-like cells. These RA-induced differentiations are accompanied by decreases in proliferation rates, modifications of expression of subsets of RA-target genes, and induction of apoptosis. To elucidate the roles played by the multiple retinoid receptors (RARs and RXRs) in response to RA treatments, F9 EC cells lacking one or several RARs or RXRs were engineered through homologous recombination. Mutated RARs and/or RXRs were then reexpressed in given RAR or RXR null backgrounds. WT and mutant cells were also treated with different combinations of ligands selective for RXRs and/or for each of the three RAR isotypes. These studies lead to the conclusion that most RA-induced events (e.g. primitive and visceral differentiation, growth arrest, apoptosis and activation of expression of a number of genes) are transduced by RARgamma/RXRalpha heterodimers, whereas some other events (e.g. parietal differentiation) are mediated by RARalpha/RXRalpha. heterodimers. They also demonstrate that both AF-1 and AF-2 activation functions of RARs and RXRs, as well as their phosphorylation, are differentially required in these RA-induced events. In RARgamma/RXRalpha heterodimers, the phosphorylation of RARgamma is necessary for triggering primitive differentiation, while that of RXRalpha is required for growth arrest. On the other hand, phosphorylation of RARalpha is necessary for parietal differentiation. Thus, retinoid receptors are sophisticated signal integrators that transduce not only the effects of their cognate ligands, but also those of ligands that bind to membrane receptors.  相似文献   

8.
Emerging evidence has shown that GSK3β plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3β interaction protein (GSKIP) able to negatively regulate GSK3β in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH‐SY5Y cells treated with retinoic acid (RA) to differentiate to neuron‐like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH‐SY5Y cells. GSKIP may affect GSK3β activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases β‐catenin in the nucleus and raises the level of cyclin D1 to promote cell‐cycle progression in SH‐SY5Y cells. Additionally, overexpression of GSKIP downregulates N‐cadherin expression, resulting in decreased recruitment of β‐catenin. Moreover, depletion of β‐catenin by small interfering RNA, neurite outgrowth is blocked in SH‐SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3β/β‐catenin, β‐catenin/cyclin D1, and β‐catenin/N‐cadherin pool during RA signaling in SH‐SY5Y cells. J. Cell. Biochem. 108: 1325–1336, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Sox3/SOX3 gene is considered to be one of the earliest neural markers in vertebrates and it is implicated in the genetic cascades that direct brain formation. We have previously shown that early phases of differentiation and neural induction of NT2/D1 embryonal carcinoma cells by retinoic acid (RA) involve up-regulation of the SOX3 gene expression. Here, we present identification of a novel positive regulatory promoter element involved in RA-dependent activation of the SOX3 gene expression in NT2/D1 cells. This element represents a direct repeat 3-like motif that directly interacts with retinoid X receptor (RXR) alpha in a sequence-specific manner. It is capable of independently mediating the RA effect in a heterologous promoter context and its disruption caused significant reduction of RA/RXR transactivation of the SOX3 promoter. Furthermore, by using synthetic antagonists of retinoid receptors, we have shown for the first time, that RA-induced SOX3 gene expression could be significantly down-regulated by the synthetic antagonist of RXR. Also, this data showed that RXRs, but not RA receptors, are mediators of RA effect on the SOX3 gene up-regulation in NT2/D1 cells. Presented data will be valuable for future investigation of SOX3 gene expression, not only in NT2/D1 model system, but also in diverse developmental, physiological and pathological settings.  相似文献   

10.
11.
12.
Macejova D  Baranova M  Liska J  Brtko J 《Life sciences》2005,77(20):2584-2593
The aim of the study was to test the hypothesis that expression of retinoid receptors (RARalpha, RARbeta, RARgamma), rexinoid receptors (RXRalpha, RXRbeta), thyroid hormone receptors (TRalpha, TRbeta), estrogen receptors (ERalpha, ERbeta), nuclear receptor coregulators (N-CoR, SRC-1, SMRT), and in addition type I iodothyronine 5'-deiodinase (5'-DI), EGFR and erb-B2/neu would be different in mammary postlactating tissue in comparison with that of nonlactating mammary gland. Using RT-PCR, we have shown that expression of RARalpha, RXRalpha,TRalpha, ERalpha,ERbeta,N-CoR, SRC-1, SMRT and EGFR in rat was significantly increased in postlactating mammary gland when compared to that of nonlactating mammary tissue. Postlactating mammary glands were found to express all RAR and RXR subtypes studied when compared to nonlactating mammary tissues that express exclusively RARalpha and RXRalpha subtypes. Enhanced expression of a number of nuclear hormone receptors, their coregulators in mammary tissue of postlactating rats in comparison with nonlactating animals identify a potential role for retinoid, thyroid and estrogen signalling pathways also after lactation period.  相似文献   

13.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

14.
15.
16.
The roles of the different retinoid receptors on the differentiation of rabbit tracheal epithelial (RbTE) cells in primary culture were analysed using selective agonists for the retinoid acid receptor subtypes RARalpha (CD336), RARbeta (CD2019), RARgamma (CD437), an RAR panagonist (CD367), a retinoid X receptor RXR panagonist (CD2624) and an antagonist for RARbeta/gamma (CD2665). Squamous differentiation was assessed via expression of cytokeratins CK13/CK4 and transglutaminase I (TGI), specific markers of metaplasia. Treatment with RARalpha and beta agonists or RAR panagonist, but not the RARgamma agonist or RXR agonist, is required for the inhibition of squamous metaplasia, evidenced by inhibition of CK13/CK4 and TGI expression. The expression of CK10 cytokeratin of keratinizing epithelia, CK14/CK5 basal cell cytokeratins, and CK6 marker of cell proliferation decreases upon exposure of the RARaalpha/beta and RXR agonists. The RARgamma agonist CD437, inactive in the decrease in CK13/CK4, CK10 and CK14, reduces CK5/CK6 amounts. CD437 is responsible for a dose-dependent apoptotic response. Nuclear labelling with propidium iodide (PI) and electron microscopy revealed chromatin condensation and nuclear fragmentation. DNA cleavage and cell fragmentation were confirmed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The RARbetagamma antagonist was also slightly active. The results indicate that CD437 causes growth arrest in the early S-phase of the cell cycle and prevents the transition G1-S-phase. CD437 was demonstrated to induce apoptosis in the S-phase cells identified by bromodeoxyuridine (BrdU) incorporation. In conclusion, RARalpha/beta ligands are effective inhibitors of squamous differentiation. On the contrary, RARgamma ligand appears to be inefficient in metaplasia inhibition, but the selective RARgamma agonist CD437 induces growth arrest and apoptosis of basal proliferative cells.  相似文献   

17.
18.
We provide here further data on the dramatic homeotic transformation of tails into limbs which is induced by retinoids during frog tadpole tail regeneration. The effect can still be produced up to nine days after tail amputation by which time tail regeneration has essentially been completed. Complete tail amputation is needed for the effects to be manifest, partial damage of various sorts to the tail is not enough. We show that as well as retinyl palmitate, other retinoids such as all-trans-retinoic acid and TTNPB, which is a RAR specific retinoid, can induce the homeotic transformation. TTNPB has a 300x greater potency than retinoic acid. Prolactin, which inhibits thyroid hormone production, prevents the appearance of limbs on the tail from which we conclude that thyroid hormone is needed. We present preliminary evidence from RT-PCR that all six retinoid receptors, the three retinoic acid receptors (RARs), and the three retinoid X receptors (RXRs), are present in the normal tail blastema and that after retinoid treatment RARα, RXRα, and RXRβ may be up-regulated. Finally, we show that when RA synthesis is inhibited, normal tail regeneration is inhibited. We conclude that tail regeneration depends upon a particular endogenous level of RA, but that when this level is raised by external administration and thyroid hormone receptors are present the up-regulation of certain retinoid receptors allows novel nuclear receptor interactions which results in the induction of limb-specific genes leading to the appearance of limbs on the tail. © 1996 Wiley-Liss, Inc.  相似文献   

19.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

20.
The ability of retinoids to induce growth inhibition associated with differentiation of diverse cell types makes them potent anti-cancer agents. We examined the effect of retinoic acid (RA) in cell lines derived from rhabdomyosarcoma (RMS), a malignant soft-tissue tumor committed to the myogenic lineage, but arrested prior to terminal differentiation. We showed that several RMS derived cell lines, including RD human rhabdomyosarcoma cells, are resistant to the growth-inhibitory and differentiation effects of RA. We established that this RA-resistance correlates with reduced expression and activity of RA-receptors in RD cells. We stably expressed either RARalpha, RARbeta, RARgamma, or RXRalpha expression vector into RD cells and found that only RARbeta or RARgamma induced a significant RA growth arrest without promoting differentiation indicating that changes in the amounts of RARs and RXRs are not sufficient to determine the RA myogenic response of rhabdomyosarcoma cells. Activation of RD cell differentiation by ectopic MRF4 expression enhanced RA-receptor activity and led to RA induction of differentiation. These studies demonstrate that RA-resistance of RD cells is linked to their lack of differentiation and suggest that the differentiation-promoting activity of RA requires factors other than RAR-RXR heterodimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号