首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This study aimed at investigating the relationship between trunk and upper limb muscle coordination and stroke velocity during tennis forehand drive. The electromyographic (EMG) activity of ten trunk and dominant upper limb muscles was recorded in 21 male tennis players while performing five series of ten crosscourt forehand drives. The forehand drive velocity ranged from 60% to 100% of individual maximal velocity. The onset, offset and activation level were calculated for each muscle and each player. The analysis of muscle activation order showed no modification in the recruitment pattern regardless of the velocity. However, the increased velocity resulted in earlier activation of the erector spinae, latissimus dorsi and triceps brachii muscles, as well as later deactivation of the erector spinae, biceps brachii and flexor carpi radialis muscles. Finally, a higher level of activation was observed with the velocity increase in the external oblique, latissimus dorsi, middle deltoid, biceps brachii and triceps brachii. These results might bring new knowledge for strength and tennis coaches to improve resistance training protocols in a performance and prophylactic perspective.  相似文献   

2.
The aim of this work was to demonstrate the rank order of motor unit (MU) recruitment by surface EMG based on a Laplacian detection technique and to document the MU features at their recruitment threshold. Surface EMG signals were recorded on the biceps brachii of 10 healthy subjects during linear force ramps. When achievable, the signals were decomposed into MU action potential (MUAP) trains. MU inter-pulse interval (IPI), conduction velocity (MUCV) and amplitude were estimated on the first 12 MUAPs of each detectable train in order to characterize the MU features at their firing onset. A strong correlation was found between MU recruitment threshold and IPI, MUCV, and amplitude, showing that the size principle can be demonstrated by a fully non-invasive EMG technique. However, signal decomposition was not possible on seven subjects due to the effects of the volume conductor when the skinfold thickness was too large. When requirements for an optimal detection of MUAP trains are met, surface EMG may be used to improve our understanding of MU activity.  相似文献   

3.
The aim of this study was to determine the effect of elbow joint position on electromyographic (EMG) and mechanomyographic (MMG) activities of agonist and antagonist muscles in young and old women. Surface EMG and MMG were recorded from the triceps and biceps brachii, and brachioradialis muscles during isometric elbow extensions in young and old women. The measurements were carried out at an optimal joint angle (A(o)), as well as at smaller (A(s) = A(o) - 30 degrees ) and larger (A(l) = A(o) + 30 degrees ) angles. The normalized to force EMG amplitude (RMS-EMG/F) was smaller in old women compared to young in all muscles. The RMS-EMG/F of the triceps brachii muscle was not affected by muscle length while that of the biceps brachii and brachioradialis muscles increased at shortest muscle length in both groups. The normalized to force MMG amplitude (RMS-MMG/F) was smaller in old than in young in the triceps brachii muscle only. There was an increase in RMS-MMG/F with triceps brachii and biceps brachii muscle shortening in both groups, and in the brachioradialis muscle -- in young only. Compared to young, older women exhibited a bigger force fluctuation during maximum voluntary contraction, but these did not contribute significantly to the RMS-MMG. Skinfold thickness accounted for the RMS-EMG/F and RMS-MMG/F differences seen between old and young women in the biceps brachii muscle only. It is concluded that, the EMG and MMG response to muscles length change in agonist and antagonist muscles is generally similar in old and young women but the optimal angle shifts toward a bigger value in older women.  相似文献   

4.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

5.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

6.
The purpose of this investigation was to determine how the triphasic electromyogram (EMG) pattern of muscle activation developed from the agonist muscle only pattern as movement time (tmov) decreased. Six adult women produced a series of 30 degrees elbow extension movements in the horizontal plane at speeds ranging from ballistic (less than 400-ms tmov) to very slow (greater than 800-ms tmov). Surface EMG from triceps brachii (agonist) and biceps brachii (antagonist) muscles were recorded, together with elbow angle, on a microcomputer. The results showed that triphasic EMG patterns developed systematically as tmov decreased from 1000 ms to less than 200 ms. In trials with very long tmov, many elbow extension movements were produced by a single continuous activation of the agonist triceps brachii muscle. As tmov decreased however, agonist activation became predominantly burst-like and other components of the triphasic EMG pattern [activation of the antagonist (Ant) and second agonist activation (Ag2)] began to appear. At the fastest movement speeds, triphasic EMG patterns (Ag1-Ant-Ag2, Ag1 being first activation of agonist muscle) were always present. This data indicated that the triphasic pattern of muscle activation was not switched on when a particular tmov was achieved. Rather, each component systematically developed until all were present, as distinctive bursts of activity, in most trials with tmov less than 400 ms.  相似文献   

7.
To study the role of coactivation in strength and force modulation in the elbow joint of children and adolescents with cerebral palsy (CP), we investigated the affected and contralateral arm of 21 persons (age 8-18) with spastic unilateral CP in three tasks: maximal voluntary isokinetic concentric contraction and passive isokinetic movement during elbow flexion and extension, and sub-maximal isometric force tracing during elbow flexion. Elbow flexion-extension torque and surface electromyography (EMG) of the biceps brachii (BB) and triceps brachii (TB) muscles were recorded. During the maximal contractions, the affected arm was weaker, had decreased agonist and similar antagonist EMG amplitudes, and thus increased antagonist co-activation (% of maximal activity as agonist) during both elbow flexion and extension, with higher coactivation levels of the TB than the BB. During passive elbow extension, the BB of the affected arm showed increased resistance torque and indication of reflex, and thus spastic, activity. No difference between the two arms was found in the ability to modulate force, despite increased TB coactivation in the affected arm. The results indicate that coactivation plays a minor role in muscle weakness in CP, and does not limit force modulation. Moreover, spasticity seems particularly to increase coactivation in the muscle antagonistic to the spastic one, possibly in order to increase stability.  相似文献   

8.
In this study, we investigated a motor strategy for increasing the amplitude of movement in rapid extensions at the elbow joint. This study focused on the changes in a triphasic electromyographic (EMG) pattern, i.e., the first agonist burst (AG1), the second agonist burst (AG2) and the antagonist burst (ANT), for increasing the amplitude of movement required after the initiation of movement. Subjects performed 40° (Basic task) and 80° of extension (Wide task). These tasks were performed under two conditions; performing a predetermined task (SF condition) and performing a task in response to a visual stimulus immediately after movement commencement (ST condition). Kinematic parameters and EMG activity from the agonist (triceps brachii) and the antagonist (biceps brachii) muscles were recorded. As a result, the onset latency of AG1 and AG2 and the duration of AG1 were longer under the ST condition than the SF condition. No difference was observed between the SF and ST condition with respect to ANT activity. It is concluded that the motor strategy for increasing the amplitude of movement after the initiation of movement was to control the movement velocity and the timing to stop movement by the coactivation duration of AG1 and ANT and to stop the desired position accurately by AG2 activity.  相似文献   

9.
Motor unit recruitment strategies investigated by surface EMG variables.   总被引:9,自引:0,他引:9  
During isometric contractions of increasing strength, motor units (MUs) are recruited by the central nervous system in an orderly manner starting with the smallest, with muscle fibers that usually show the lowest conduction velocity (CV). Theory predicts that the higher the velocity of propagation of the action potential, the higher the power at high frequencies of the detected surface signal. These considerations suggest that the power spectral density of the surface detected electromyogram (EMG) signal may give indications about the MU recruitment process. The purpose of this paper is to investigate the potential and limitations of spectral analysis of the surface EMG signal as a technique for the investigation of muscle force control. The study is based on a simulation approach and on an experimental investigation of the properties of surface EMG signals detected from the biceps brachii during isometric linearly increasing torque contractions. Both simulation and experimental data indicate that volume conductor properties play an important role as confounding factors that may mask any relation between EMG spectral variables and estimated CV as a size principle parameter during ramp contractions. The correlation between spectral variables and CV is thus significantly lower when the MU pool is not stable than during constant-torque isometric contractions. Our results do not support the establishment of a general relationship between spectral EMG variables and torque or recruitment strategy.  相似文献   

10.
This paper examines changes in the variability of electromyographic (EMG) activity and kinematics as a result of practicing a maximal performance task. Eight subjects performed rapid elbow flexion to a target in the horizontal plane. Four hundred trials were distributed equally over four practice sessions. A potentiometer at the elbow axis of rotation of a manipulandum recorded the angular displacement. The EMG activity of the biceps and the triceps brachii was monitored using Beckman surface electrodes. Limb speed increased while both target error and trajectory (velocity versus position) variability decreased. There was an increase in the absolute measure of total EMG variability (the first standard deviation at each point of the biceps and triceps waveform multiplied together). However, the coefficient of variation (the first standard deviation divided by the mean and the result multiplied by 100) of the mean amplitude value of the individual EMG bursts decreased. The variability of triceps motor time also decreased while the variability biceps motor time remained unchanged. The results demonstrated a clear relationship between kinematic and EMG variability. The EMG and the trajectory data suggest that practice resulted in greater central nervous system control over both the spatial-temporal aspects of movement and the magnitude of the biceps and triceps muscle force-impulses.  相似文献   

11.
The purpose of the study was (1) to assess changes in electromyographical (EMG) and mechanomyographical (MMG) signals of the biceps and triceps brachii muscles during absolute submaximal load holding in Parkinson’s disease patients tested during their medication “ON-phase” and in age-matched controls, and (2) to check whether mechanomyography can be useful in evaluation of neuromuscular system activity in Parkinson’s disease patients.The data analysis was performed on nine females with Parkinson’s disease and six healthy, age-matched females. The EMG and MMG signals were recorded from the short head of the biceps brachii (BB) and the lateral head of the triceps brachii (TB) muscles.It was concluded that compared to the controls, the Parkinson’s disease patients exhibited higher amplitude in the biceps brachii muscle and lower median frequency of the MMG signal in the both tested muscles. However, no differences in the EMG amplitude and an increase of the EMG median frequency in the triceps brachii muscle of the Parkinson’s disease group were observed. The MMG was not affected by physiological postural tremor and can depict differences between parkinsonians and controls, which may suggest that it is valuable tool for neuromuscular assessment for this condition.  相似文献   

12.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

13.
We studied the relationship between changing elbow joint angle and the power spectral density of the biceps brachii muscle electromyogram (EMG) during submaximal isometric contractions. For this purpose, we recorded the EMG of the biceps brachii muscle with surface electrodes in 13 subjects. Each subject held a 2.8-kg weight and contracted the biceps isometrically for 30 s at one of two lengths. The length of the muscle was changed by flexing the forearm toward the upper arm to form an angle of 135 degrees (L1) or 45 degrees (L2). We found that the mean centroid frequency (fc) of the EMG power spectral density was 26% lower at L1 than at L2 (P less than 0.01). For each subject there was no significant change in fc during the isometric contraction at either angle. In addition, in nine subjects who sustained fatiguing contractions of the biceps with a 6-kg load, fc decreased by 15% (P less than 0.025). These data suggest that a change in the length at which a muscle contracts isometrically can alter or induce indirectly an alteration in the frequency content of its EMG. This finding may have important implications for the assessment of respiratory muscle EMG especially during loaded breathing.  相似文献   

14.
One way to improve the weak triceps brachii voluntary forces of people with chronic cervical spinal cord injury may be to excite the paralyzed or submaximally activated fraction of muscle. Here we examined whether elbow extensor force was enhanced by vibration (80 Hz) of the triceps or biceps brachii tendons at rest and during maximum isometric voluntary contractions (MVCs) of the elbow extensors performed by spinal cord-injured subjects. The mean +/- SE elbow extensor MVC force was 22 +/- 17.5 N (range: 0-23% control force, n = 11 muscles). Supramaximal radial nerve stimuli delivered during elbow extensor MVCs evoked force in six muscles that could be stimulated selectively, suggesting potential for force improvement. Biceps vibration at rest always evoked a tonic vibration reflex in biceps, but extension force did not improve with biceps vibration during triceps MVCs. Triceps vibration induced a tonic vibration reflex at rest in one-half of the triceps muscles tested. Elbow extensor MVC force (when >1% of control force) was enhanced by vibration of the triceps tendon in one-half of the muscles. Thus triceps, but not biceps, brachii tendon vibration increases the contraction strength of some partially paralyzed triceps brachii muscles.  相似文献   

15.
Maximum voluntary isometric contractions (MVCs) are commonly used to normalize electromyography (EMG) data and must be reliable even if the individual has no prior experience performing MVCs. This study explored the effect of familiarization over three testing sessions on MVC performance and reliability by comparing muscle activation during standardized maximal and sub-maximal muscle contractions. Participants were recruited into two groups: (1) individuals who regularly engaged in upper body resistance training; (2) individuals with little or no prior experience in upper body resistance training. EMG was collected from two pairs of muscles; biceps brachii and triceps brachii from the arm, and erector spinae and external oblique from the trunk. The trunk muscles were chosen as muscles that are less frequently activated in isolation in day-to-day life. It was found that there were no significant improvements in MVC performance or within-day reliability over the three testing sessions for both resistance trained and non-resistance trained groups. Resistance-trained individuals showed a trend to be more reliable within-day than non-resistance trained participants. Day-to-day MVC reliability, particularly of the erector spinae muscle, was limited in some participants. This suggests that further efforts are needed to improve our capability of reliably eliciting muscle activation MVCs for EMG normalization, especially for muscles that are less frequently activated in isolation.  相似文献   

16.
The purpose of this investigation was to examine the effects of unilateral, isometric training of the forearm flexors on strength and the mechanomyographic (MMG) and electromyographic (EMG) responses of the biceps brachii in the trained and untrained limb at three joint angles. Seventeen adult females (mean age +/- SD = 21 +/- 2 years) were randomly assigned to a control (CTL; N=7) or a training (TRN; N=10) group. The TRN group performed isometric training of the non-dominant forearm flexors on a Cybex II Dynamometer at a joint angle such that the Cybex lever arm was positioned 60 degrees above the horizontal plane. The training consisted of 3 to 5 sets of 8, 6-second repetitions at 80% of maximal voluntary contraction 3 times per week for 8 weeks. The results indicated a significant increase in flexed arm circumference as well as isometric strength in the trained limb at all three joint angles. There were, however, no changes in MMG or EMG amplitude in the trained or untrained limb and no cross-training effect for strength or flexed arm circumference. These findings suggested that the increased strength may have been due to factors associated with hypertrophy, independent of neural adaptations in the biceps brachii. Furthermore, hypertrophy may have had counteractive effects on the MMG signal that could be responsible for the lack of a training-induced change in the MMG amplitude.  相似文献   

17.

Objectives:

To evaluate the effects of performing battling rope exercise with and without the addition of whole-body vibration (WBV) on muscle activity of the leg, trunk, and upper body.

Methods:

Twenty-eight recreationally active university students completed 20-s of battling rope undulation for 6 separate conditions: 1) alternating arm motion no WBV -Alt_NoWBV; 2) alternating arm motion 30 Hz low amplitude WBV -Alt_30 Hz-L; 3) alternating arm motion 50 Hz high amplitude -Alt_50 Hz-H; 4) double arm motion no WBV -Double_NoWBV; 5) double arm motion 30Hz low amplitude WBV -Double_30Hz-L; 6) double arm motion 50 `Hz high amplitude -Double_50 Hz-H. Electromyography (EMG) was measured for the gastrocnemius medialis (GM), vastus medialis oblique (VMO), vastus lateralis (VL), rectus abdominis (RA), multifidus (MF), biceps brachii (BB), and triceps brachii (TB) muscles.

Results:

The double arm motion during undulation resulted in greater (p<0.05) muscle activity in the VMO, VL, RA, and MF muscles while the GM was more active during the alternating arm motion. WBV at 50Hz increased EMG in all muscles measured vs NoWBV and the 30 Hz condition.

Conclusion:

These results are the first to demonstrate that the exercise stimulus of performing battling rope exercise can be augmented by completing the exercise while being exposed to WBV from a ground-based platform.  相似文献   

18.
The purpose of this study was to determine if handgrip position during arm cranking exercise influences the neuromuscular activity of muscles biceps brachii (BB), lateral head of triceps brachii (TB), middle deltoid (DT), infraspinatus (IS) and brachioradialis (BR). Fifteen participants cranked an arm ergometer using three different handgrip positions (supinated, pronated, and neutral). Electromyographic (EMG) data were recorded from the aforementioned muscles, and relative duration of EMG activation and amplitude were quantified for the first and second 180 degrees of crank angle. EMG measures were analyzed with MANOVA and follow-up univariate procedures; alpha was set at 0.01. The relative durations of EMG activation did not differ between handgrip positions. Muscle IS exhibited 36% less amplitude in the supinated versus neutral handgrip position (second half-cycle), and muscle BR displayed 63% greater amplitude across cycles in the neutral versus supinated and pronated handgrip positions. The greater BR activity displayed in the neutral handgrip position may reflect its anatomical advantage as an elbow flexor when the forearm is in neutral position. Muscle IS exhibited less activity in the supinated position and may be clinically relevant if it allows arm cranking to occur without subsequent shoulder pain, which is often the aim of shoulder rehabilitation.  相似文献   

19.
Popular fitness literature suggests that varied hand placements during push-ups may isolate different muscles. Scientific literature, however, offers scant evidence that varied hand placements elicit different muscle responses. This study examined whether different levels of electromyographic (EMG) activity in the pectoralis major and triceps brachii muscles are required to perform push-ups from each of 3 different hand positions: shoulder width base, wide base, and narrow base hand placements. Forty subjects, 11 men and 29 women, performed 1 repetition of each push-up. The EMG activity for subjects' dominant arm pectoralis major and triceps brachii was recorded using surface electrodes. The EMG activity was greater in both muscle groups during push-ups performed from the narrow base hand position compared with the wide base position (p < 0.05). This study suggests that, if a goal is to induce greater muscle activation during exercise, then push-ups should be performed with hands in a narrow base position compared with a wide base position.  相似文献   

20.
The relative roles of motor unit firing rate modulation and recruitment were evaluated when individuals with cervical spinal cord injury (SCI) and able-bodied controls performed a brief (6 s), 50% maximal voluntary contraction (50% MVC; target contraction) of triceps brachii every 10 s until it required maximal effort to achieve the target force. Mean (+/-SD) endurance times for SCI and control subjects were 34+/-26 and 15+/-5 min, respectively, at which point significant reductions in maximal triceps force had occurred. Twitch occlusion analysis in controls indicated that force declines resulted largely from peripheral contractile failure. In SCI subjects, triceps surface EMG and motor unit potential amplitude declined in parallel suggesting failure at axon branch points and/or alterations in muscle membrane properties. The force of low threshold units, measured by spike-triggered averaging, declined in SCI but not control subjects, suggesting that higher threshold units fatigued in controls. Central fatigue was also obvious after SCI. Mean (+/-SD) MVC motor unit firing rates declined significantly with fatigue for control (24.6+/-7.1 to 17.3+/-5.1Hz), but not SCI subjects (25.9+/-12.7 to 20.1+/-9.7Hz). Unit firing rates were unchanged during target contractions for each subject group, but with the MVC rate decreases, units of SCI and control subjects were activated intensely at endurance time (88% and 99% MVC rates, respectively). New unit recruitment also maintained the target contractions although it was limited after SCI because many descending inputs to triceps motoneurons were disrupted. This resulted in sparse EMG, even during MVCs, but allowed the same unit to be recorded throughout. These EMG data showed that both unit recruitment and rate modulation were important for maintaining force during repeated submaximal intermittent contractions of triceps brachii muscles performed by SCI subjects. Similar results were found for control subjects. Muscles weakened by SCI may therefore provide a useful model in which to directly study motor unit rate modulation and recruitment during weak or strong voluntary contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号