首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Phagosome fusion vesicles (PFVs), a new population of relatively large granules in Paramecium caudatum which fuse with the first stage of digestive vacuoles (DV-I) shortly after these vacuoles are released from the cytopharynx (their site of formation), have been studied by using the freeze-fracture technique. Identification of PFVs is possible in the resulting replicas at all sites where they are commonly found in thin sections, at the cytopharynx, bound but not fused with nascent digestive vacuoles and fused with released vacuoles in the cell's posterior end. These PFVs have membranes which do not resemble the membranes of the forming digestive vacuole membrane or the discoidal vesicle membranes from which vacuole membrane is derived. Their smooth E-fracture face with only 50 to 100 intramembrane particles (IMPs) per micrometers 2 and particulate P-face (approximately 2500 IMPs/micrometers) do resemble the second vacuole stage (DV-II) which is characterized by a smaller diameter and acid pH. Evidence is presented for PFV fusion with the DV-I and for membrane replacement, at least in part, as the DV-I becomes a DV-II. Membrane replacement entails first adding PFVs to the DV-I and then removing the original discoidal vesicle-derived membrane as tubules as the vacuole condenses. Implications of the possible role of PFVs in forming intravacuolar symbiotic relationships are also discussed.  相似文献   

2.
ABSTRACT. The temporal changes in the size and pH of digestive vacuoles (DV) in Paramecium caudatum were reevaluated. Cells were pulsed briefly with polystyrene latex spheres or heat-killed yeast stained with three sulfonphthalein indicator dyes. Within 5 min of formation the intravacuolar pH declined from ~7 to 3. With the exception of a transient and early increase in vacuolar size, vacuole condensation occurred rapidly and paralleled the acidification so that vacuoles reached their lowest pH and minimal size simultaneously. Neutralization and expansion of vacuole size began when vacuoles were GT8 min old. No labeled vacuoles were defecated prior to 21 min after formation but almost all DV were defecated within 1 h so that the digestive cycle of individual vacuoles ranged from 21 to 60 min. Based on these size and pH changes, the presence of acid phosphatase activity, and membrane morphology, digestive vacuoles can be grouped into four stages of digestion. The DV-I are GT6 min old and undergo rapid condensation and acidification. The DV-II are between 4 to 10 min old and are the most condensed and acidic vacuoles. The DV-III range in age from 8 to ~20 min and include the expanding or expanded vacuoles that result from lysosomes fusing with DV-II. The DV-IV are GD21 min old, and since digestion is presumably completed, they can be defecated. The rise in intravacuolar pH that accompanies vacuole expansion suggests that lysosomes play a role in vacuole neutralization in addition to their degradative functions. The acidification and condensation processes in DV-I appear to be unrelated to lysosomal function, as no acid phosphaiase activity has been detected at this stage, but may be related to phagosomal functions important in killing food organisms, denaturing proteins prior to digestion, and preparing vacuole membrane for fusion with lysosomes.  相似文献   

3.
Little is known about the fate of lysosomal membrane in phagocytic cells. Because the age of the digestive vacuoles in Paramecium caudatum can be easily determined, we have been able to study the dynamic membrane events in the older vacuoles. Late in the phagolysosomal stage (DV-III) the vacuole membrane undergoes a burst of tubule formation. The tubules expand into vesicles which have characteristics resembling lysosomes in both thin sections and freeze-fracture replicas. The tubules also contain acid phosphatase activity when they arise from acid phosphatase-reactive vacuoles. We conclude that after active digestion lysosomal membrane is retrieved in whole or in part along with some membrane-associated hydrolases. A logical extension of these results is that the lysosome-like vesicles, after being recharged with hydrolases by fusing with primary lysosomes, are recycled back to DV-II for reuse.  相似文献   

4.
The paired spermatozoa of the dytiscid beetles Dytiscus marginalis and Hydaticus seminiger were studied by electron microscopy with the aim of examining whether the regions of the cell membrane in the zones of sperm conjugation might differ from other regions and to explore whether these cells had any other specialized domains of the cell membrane that could be recognized by the freeze-fracturing technique. The spermatozoa are conjugated along one side of the sperm head and proximal tail portion, called the ventral side. The cell membrane was seen to contain tightly packed intramembranous particles (IMPs) that were predominantly located in the external membrane face (the E-face). In thin sections the cell membrane had a ladder-like appearance at these regions and a specialized type of glycocalyx seen as a fluffy material containing granules. Other specialized membrane domains could also be recorded: a ribbon of particles in the protoplasmic face (P-face) of the dorsal side of the spermatozoon at the proximal tail portion and regularly arranged particle rows in the P-face of the distal tail portion. These domains corresponded to regions where the glycocalyx is prominent. Both the E-face and the P-face of the cell membrane were seen to contain numerous intramembranous particles, which suggests an active function for both membrane leaflets; this is in contrast to the situation in most cells where the particles are mainly in the P-face. The functions of the intramembranous particles in the specialized domains of the cell membrane remains unknown. Some particles may represent receptors or ion gates, others proteins with a mechanical function.  相似文献   

5.
Kodama Y  Fujishima M 《Protist》2009,160(1):65-74
Each symbiotic Chlorella of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole to protect from lysosomal fusion. To understand the timing of differentiation of the perialgal vacuole from the host digestive vacuole, algae-free P. bursaria cells were fed symbiotic C. vulgaris cells for 1.5min, washed, chased and fixed at various times after mixing. Acid phosphatase activity in the vacuoles enclosing the algae was detected by Gomori's staining. This activity appeared in 3-min-old vacuoles, and all algae-containing vacuoles demonstrated activity at 30min. Algal escape from these digestive vacuoles began at 30min by budding of the digestive vacuole membrane into the cytoplasm. In the budded membrane, each alga was surrounded by a Gomori's thin positive staining layer. The vacuoles containing a single algal cell moved quickly to and attached just beneath the host cell surface. Such vacuoles were Gomori's staining negative, indicating that the perialgal vacuole membrane differentiates soon after the algal escape from the host digestive vacuole. This is the first report demonstrating the timing of differentiation of the perialgal vacuole membrane during infection of P. bursaria with symbiotic Chlorella.  相似文献   

6.
Axonal and axolemmal development of fibers from rat optic nerves in which gliogenesis was severely delayed by systemic injection of 5-azacytidine (5-AZ) was examined by freeze-fracture electron microscopy. In neonatal (0-2 days) rat optic nerves, all fibers lack myelin, whereas in the adult, virtually all axons are myelinated. The axolemma of neonatal premyelinated fibers is relatively undifferentiated. The P-fracture face (P-face) displays a moderate (approximately 550/micron 2) density of intramembranous particles (IMPs), whereas the E-fracture face (E-face) has few IMPs (approximately 125/micron 2) present. By 14 days of age, approximately 25% of the axons within control optic nerves are ensheathed or myelinated, with the remaining axons premyelinated. The ensheathed and myelinated fibers display increased axonal diameter compared to premyelinated axons, and these larger caliber fibers exhibit marked axonal membrane differentiation. Notably, the P-face IMP density of ensheathed and myelinated fibers is substantially increased compared to premyelinated axolemma, and, at nodes of Ranvier, the density of E-face particles is moderately high (approximately 1300/micron 2), in comparison to internodal or premyelinated E-face axolemma. In optic nerves from 14-day-old 5-AZ-treated rats, few oligodendrocytes are present, and the percentage of myelinated fibers is markedly reduced. Despite delayed gliogenesis, some unensheathed axons within 5-AZ-treated optic nerves display an increased axonal diameter compared to premyelinated fibers. Most of these large caliber fibers also exhibit a substantial increase in P-face IMP density. Small (less than 0.4 micron) diameter unensheathed axons within treated optic nerves maintain a P-face IMP density similar to that of control premyelinated fibers. Regions of increased E-face particle density were not observed. The results demonstrate that some aspects of axolemma differentiation continue despite delayed gliogenesis and the absence of glial ensheathment, and suggest that axolemmal ultrastructure is, at least in part, independent of glial cell association.  相似文献   

7.
An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- β-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane.  相似文献   

8.
The effects of chemical dissociation on rat ovarian granulosa cell gap junctions has been studied using freeze-fracture electron microscopy. Sequential exposure of granulosa cells within follicles to solutions containing 6·8 mM EGTA [ethylene-bis-(β-aminoethyl ether)-N,N′-tetra acetic acid] and 0·5 M sucrose results in extensive cellular dissociation of the follicular epithelium. Freeze-fracture replicas made from fixed, control or EGTA-treated ovarian follicles exhibit extensive gap junctions between granulosa cells that are characterized by a range of packing order of constituent P-face particles or E-face pits. In contrast, exposure to 0·5 M sucrose containing 1·8 mM EGTA for as little as 1 min results in a consistently close packing of particles or pits which is accompanied by splitting of gap junctions between granulosa cells. The process of junction splitting was studied in detail in replicas prepared from follicles treated sequentially for various periods of time with EGTA and sucrose solutions. Initially, large gap junctions lose their regular shape and fragment into numerous tightly packed aggregates of P-face particles or E-face pits which are separated by unspecialized areas of plasma membrane. Subsequent to junction fragmentation, individual junction plaques separate at sites of cell contact and generate hemijunctions that border the intercellular space, Hemijunctions undergo particle dispersion of the P fracture face which results in an increased density of large intramembrane particles; no corresponding change in E-face pits is discernible at this stage. Morphometric analysis of replicas of tissue undergoing junction splitting indicates that junctional surface area decreases to 10–20% of control levels during this same treatment and so further supports the qualitative observations on junction fragmentation. Viabilities of granulosa cells obtained by these techniques also agree with the sequence observed in the morphometric analysis of the replicas. Finally, within 15 min after placing ovaries in isotonic, Ca2+-containing salt solutions, gap junction reformation occurs by aggregation of particles at sites of intercellular contact. These sites are distinguished by the appearance of short surface protrusions or indentations on their respective P and E fracture faces. The data suggest a mechanism for EGTA-sucrose mediated cellular dissociation in the follicular epithelium in which gap junctional particles are free to move in the plane of the plasma membrane and may be re-utilized to form gap junctions in the presence of extracellular calcium.  相似文献   

9.
The microvillar and lumenal plasma membrane P-face of Ascaris intestinal cells is shown to be covered by relatively large (13 nm) particles at a fairly high density (1000/μm2), while the E-face has virtually none. The P-face of the lateral cell membranes, those separating the cells, have fewer and smaller (8 nm) particles. The intestinal cells are also shown to be connected by an apical complex of smooth septate and tricellular junctions similar to those found between some insect midgut cells. A periodic layer of tannic acid staining material is found on the cytoplasmic sides of the smooth septate junction, and when the intercellular space is filled with lanthanum, smoothly curved, 10 nm wide septal walls can be seen. Below the belt of septate junctions are a large number of gap junctions. These have closely packed arrays of particles on the P-face with some particle aggregates adhering to the closely packed pit arrays on the E-face.  相似文献   

10.
Phagosome fusion vesicles of paramecium. I. Thin-section morphology   总被引:2,自引:0,他引:2  
Ultrastructural studies of the digestive system of Paramecium caudatum focusing on the first 5 min of digestive-vacuole age reveal a set of vesicles, named phagosome fusion vesicles (PFVs), which fuse with the digestive vacuole just after the vacuoles are released from the cytopharynx and concomitant with vacuole acidification. Serial thin-sections of vacuoles labeled with horseradish peroxidase (HRP) and/or latex beads in pulse-chase studies were observed. PFVs, irregularly shaped, electron-translucent vesicles ranging from a small diameter to over 1 micro, are first seen in the region of the cytopharynx where they bind to the nascent vacuole membrane. Within 30 sec of vacuole release the PFVs fuse with the vacuole where they remain for a brief time connected to the vacuole by a narrow annulus. HRP-reaction product is found in vacuoles but not in PFVs before PFVs fuse with the vacuoles. After fusion with PFVs HRP is quickly inactivated. Tubular extensions of vacuole membrane then form between the fused PFVs. By 3 to 5 min both PFVs and tubules disappear from the vacuole surface and lysosomes appear in their place. We believe the tubules are pinched off as PFV membrane is being added to the vacuole. Microfilaments coat the membrane during all these dynamic events. Since the pH of the vacuole becomes acid during the first few minutes, we are now looking for a direct correlation between PFV fusion and acidification.  相似文献   

11.
Summary Perinatal changes in the appearance of intramembranous particles (IMPs) of microvilli of enterocytes were analyzed quantitatively. In both the jejunum and the ileum, the IMP density on the P-face showed no significant changes from day 17 of gestation to day 5 of postnatal life. It increased between day 5 and day 12, reached a maximum at day 21, and thereafter decreased slightly. The IMP density on the E-face remained almost constant during the perinatal period in both intestinal parts. Measurements of particle diameters proved that neither the P-face nor the E-face membrane showed significant differences in either mean value or size distribution among different age groups.This study has revealed that the perinatal change in the IMP density on the P-face of microvilli correlates well with changes in the activity of certain enzymes found in the membranes of microvilli, e.g. disaccharidase and aminopeptidase.This study was supported by a Grant-in-Aid for Scientific Research to T. Yamamoto from the Ministry of Education, Science and Culture of Japan  相似文献   

12.
Summary The membranes of the microvilli of UV- and green-photoreceptors of the ant Myrmecia gulosa have been studied with the freeze-fracture technique. Both inner fracture faces, the cytoplasmic P-face and the extracellular E-face, are covered by globular particles. The P-face particles appear to be randomly distributed, occasionally forming clusters. Their density is about 7,000/m2, and their mean diameter is 8.5 nm. The E-face particles, however, are arranged in an ordered square pattern with a center-to-center spacing of 9 nm. The density and distribution of P- and E-face particles are the same in both the UV- and the green-photoreceptor membranes. No differences were found in the ultrastructural organization of photoreceptor membranes after dark or light adaptation. It is suggested that the P-face particles represent rhodopsin molecules.  相似文献   

13.
Kodama Y  Fujishima M 《Protoplasma》2005,225(3-4):191-203
Summary. Each symbiotic Chlorella sp. of the ciliate Paramecium bursaria is enclosed in a perialgal vacuole derived from the host digestive vacuole, and thereby the alga is protected from digestion by lysosomal fusion. Algae-free cells can be reinfected with algae isolated from algae-bearing cells by ingestion into digestive vacuoles. To examine the timing of acidification and lysosomal fusion of the digestive vacuoles and of algal escape from the digestive vacuole, algae-free cells were mixed with isolated algae or yeast cells stained with pH indicator dyes at 25 ± 1 °C for 1.5 min, washed, chased, and fixed at various time points. Acidification of the vacuoles and digestion of Chlorella sp. began at 0.5 and 2 min after mixing, respectively. All single green Chlorella sp. that had been present in the host cytoplasm before 0.5 h after mixing were digested by 0.5 h. At 1 h after mixing, however, single green algae reappeared in the host cytoplasm, arising from those digestive vacuoles containing both nondigested and partially digested algae, and the percentage of such cells increased to about 40% at 3 h. At 48 h, the single green algae began to multiply by cell division, indicating that these algae had succeeded in establishing endosymbiosis. In contrast to previously published studies, our data show that an alga can successfully escape from the host’s digestive vacuole after acidosomal and lysosomal fusion with the vacuole has occurred, in order to produce endosymbiosis. Correspondence and reprints: Biological Institute, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan.  相似文献   

14.
Cholesterol and intramembrane particle distribution on autophagic vacuole membranes was studied in Ehrlich ascites cells using filipin labelling and freeze-fracture electron microscopy. Unsaturated fatty acids were stained using imidazole-buffered osmium tetroxide. Autophagocytosis was induced with vinblastine, and early autophagic vacuoles were accumulated by lowering the ATP level in the cells with iodoacetate. Filipin labelling was observed in the limiting membranes of later, apparently hydrolase-containing autophagic vacuoles, whereas the most newly-formed, double-membrane limited vacuoles were not labelled. The limiting membranes of late, residual body-type vacuoles either showed patchy filipin-induced deformation or were completely smooth. Imidazole-buffered osmium tetroxide stained the membranes of newly-formed or developing autophagic vacuoles partly or entirely. The membranes of older vacuoles stained more weakly. Intramembrane particle density on the P-face of the outer limiting membranes of newly-formed autophagic vacuoles was similar to that on endoplasmic reticulum, and the density seemed to increase slightly later on. The size of the P-face particles increased when the vacuoles became older. The limiting membranes of late, residual body-type vacuoles were almost smooth. The inner limiting membranes and the membranes inside the autophagic were always almost particle-free. In conclusion, the amount of cholesterol, unsaturated fatty acids and protein in autophagic vacuole membranes changes during vacuole maturation.  相似文献   

15.
In the post-partum rat endometrium, ultrastructural distinction could be made between stromal cells (fibroblast-like cells) and macrophages, especially by the freeze-fracture technic. The stromal cells were characterized by a well-developed rough-surfaced endoplasmic reticulum (RER) and intercellular junctions, while the macrophages had many vacuoles and vesicles, but no intercellular contact with each other. The freeze-fracture image showed that the stromal cells had many low linear elevations and gap junctions on the cleaved plane of the cell membranes, while the macrophages had no linear elevations or intercellular junctions. The cell membranes of the stromal cells had more intramembranous particles (IMP) (P-face 697 +/- 63/micrometers 2, E-face 303 +/- 52/micrometers 2) than those of the macrophages (P-face 467 +/- 50/micrometers 2, E-face 217 +/- 35/micrometers 2). It was confirmed that these two types of cell phagocytosed collagen fibrils.  相似文献   

16.
Electron microscopy of bacterized and axenic trophozoites of Entamoeba histolytica showed only slight differences in ultrastructure between the two. As with other species of Entamoeba so far studied, this species lacks typical mitochondrial structures and formed endoplasmic reticulum. Dense clusters of glycogen particles are especially characteristic in axenic amebas. Microtubular structures 360 A in diameter appear randomly oriented in both bacterized and axenic trophozoites. Ribonucleoprotein (RNP) bodies are of two typical forms—elongate, parallel arrays of helices (the classical chromatoid bodies), and short helical fragments. Both kinds of helix show a recurring pitch angle of 68–80° and an over-all diameter of 480 A. RNP particles comprising the helices average 180 A in diameter. The longitudinal axes of adjacent helices are 440 A apart. Following RNase digestion of water-soluble methacrylate sections, helices show a core approximately 60 A in diameter. Short helices are also associated with digestive vacuoles. Free RNP particles per se are never seen within digestive vacuoles, but intact short helices are frequently detected closely associated with the external membrane of digestive vacuoles. In some cases, continuation of externally intact helical forms could be related to filamentous material within the vacuole. Acid phosphomonoesterase activity could be demonstrated within digestive vacuoles where deposition of reaction product is especially intense on the filamentous material.  相似文献   

17.
Dallai R  Lupetti P  Lane NJ 《Tissue & cell》1996,28(5):603-612
Cultures of the rotifer Brachionus plicatilis were examined with regard to their interepithelial junctions after infiltration with the extracellular tracer lanthanum, freeze-fracturing or quick-freeze deepetching. The lateral borders between ciliated cells have an unusual apical adhering junction. This apical part of their intercellular cleft looks desmosome-like, but it is characterized by unusual intramembranous E-face clusters of particles. Deep-etching reveals that these are packed together in short rows which lie parallel to one another in orderly arrays. The true membrane surface in these areas features filaments in the form of short ribbons; these are produced by projections, possibly part of the glycocalyx, emerging from the membranes, between which the electron-dense tracer lanthanum permeates. These projections appear to overlap with each other in the centre of the intercellular cleft; this would provide a particularly flexible adaptation to maintain cell-cell contact and coordination as a consequence. The filamentous ribbons may be held in position by the intramembranous particle arrays since both have a similar size and distribution. These contacts are quite different from desmosomes and appear to represent a distinct new category of adhesive cell-cell junction. Beneath these novel structures, conventional pleated septate junctions are found, exhibiting the undulating intercellular ribbons typical of this junctional type, as well as the usual parallel alignments of intramembranous rows of EF grooves and PF particles. Below these are found gap junctions as close-packed plaques of intramembranous particles on either the P-face or E-face. After freeze-fracturing, the complementary fracture face to the particles shows pits, usually on the P-face, arrayed with a very precise hexagonal pattern.  相似文献   

18.
The endomembrane system of the chlamydomonad flagellate, Gloeomonas kupfferi Skuja, consists of a complex network of endoplasmic reticulum, Golgi bodies, and various vacuoles. One of the more distinct vacuolar components is the contractile vacuole (CV) complex, which consists of two anterior contractile vacuoles that expand/contract approximately every 30 s. In this study, experimental cytochemical labeling was performed to help elucidate possible endocytic/membrane recycling mechanisms in Gloeomonas and the possible role of the contractile vacuole in this process. When incubated with 0.5 mg · mL?1 cationic ferritin for short periods of time (2–60 min), labeling follows this route: inner membrane of CV, globular deposits in the CV and associated vesicles, and ultimately the terminal trans face cisternae of the Golgi apparatus (GA). Similar incubations with Lucifer yellow and concanavalin A—gold conjugates support distinct uptake of exogenous ligands by the CV and associated vesicles. Our results suggest that the contractile vacuole may be a site of endocytosis and that the trans GA loci may be a key site of membrane recycling.  相似文献   

19.
The thylakoids of vegetative cells of the filamentous cyanobacterium, Anabaena cylindrica, are capable of oxygen-evolving photosynthesis and contain both Photosystems I and II (PSI and PSII). The heterocysts, cells specialized for nitrogen fixation, do not produce oxygen and lack Photosystem II activity, the major accessory pigments, and perhaps the chlorophyll a associated with PSII. Freeze-fracture replicas of vegetative cells and of heterocysts reveal differences in the structure of the thylakoids. A histogram of particle sizes on the exoplasmic fracture face (E-face, EF) of vegetative cell thylakoids has two major peaks, at 75 and 100 A. The corresponding histogram for heterocyst thylakoids lacks the 100 A size class, but has a very large peak at about 55 A with a shoulder at 75 A. Histograms of protoplasmic fracture face (P-face, PF) particle diameters show single broad peaks, the mean diameter being 71 A for vegetative cells and 64 A for heterocysts. The thylakoids of both cell types have about 5600 particles/micrometers2 on the P-face. On the E-face, the density drops from 939 particles/micrometers2 on vegetative cell thylakoids to 715 particles/micrometers2 on heterocyst thylakoids. The data suggest that the 100 A E-face particle of vegetative cell thylakoids is a PSII complex. The 55 A EF particle of heterocysts may be part of the nitrogenase complex or a remnant of the PSII complex. The role of the 75 A EF particle is unknown. Other functions localized on cyanobacterial thylakoids, such as respiration and hydrogenase activity, must be considered when interpreting the structure of these complex thylakoids.  相似文献   

20.
Ten years of research on digestive vacuoles (phagosomes) of Paramecium caudatum have revealed sequential changes both within the vacuole lumen as well as within the surrounding membrane. Four vacuole stages can be recognized by a combination of thin section and freeze-fracture ultrastructural features. Three sets of vesicles (discoidal vesicles, acidosomes, and lysosomes) fuse with the vacuole, each at a predetermined stage, to bring about these membrane and physiological changes. At various times membrane is removed as vesicles from the vacuole surface, which has the effect of regulating vacuole size. Membrane recycling, membrane replacement, and specific membrane to membrane recognition all appear to be operating during the digestive cycle. Details of these events are summarized in this address and a number of unanswered questions suggest areas for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号