首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Virtually complete sequence specific 1H and 15N resonance assignments are presented for acid denatured reduced E. coli glutaredoxin 3. The sequential resonance assignments of the backbone rely on the combined use of 3D F1-decoupled ROESY-15N-HSQC and 3D 15N-HSQC-(TOCSY-NOESY)-15N-HSQC using a single uniformly 15N labelled protein sample. The sidechain resonances were assigned from a 3D TOCSY-15N-HSQC and a homonouclear TOCSY spectrum. The presented assignment strategy works in the absence of chemical exchange peaks with signals from the native conformation and without 13C/15N double labelling. Chemical shifts, 3J(H, NH) coupling constants and NOEs indicate extensive conformational averaging of both backbone and side chains in agreement with a random coil conformation. The only secondary structure element persisting at pH 3.5 appears to be a short helical segment comprising residues 37 to 40.Abbreviations HSQC heteronuclear single quantum coherence - NMR nuclear magnetic resonance - NOE nuclear Overhauser effect - NOESY two-dimensional NOE spectroscopy - ROE nuclear Overhauser effect in the rotating frame - ROESY two-dimensional ROE spectroscopy - TOCSY total correlation spectroscopy - TPPI time proportional phase incrementation Correspondence to: G. Otting  相似文献   

2.
Summary Modern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b 5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b 5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.Abbreviations DANTE delays alternating with nutation for tailored excitation - DEAE diethylaminoethyl - DQF-COSY 2D double-quantum-filtered correlation spectroscopy - EDTA ethylenediaminetetraacetic acid - HCCH-TOCSY 3D proton-correlated carbon TOCSY experiment - HMQC 2D heteronuclear multiple-quantum correlation spectroscopy - HNCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons - HNCO 3D triple-resonance experiment correlating amide protons, amide nitrogens and carbonyl carbons - HNCOCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons via carbonyl carbons - HOHAHA 2D homonuclear Hartmann-Hahn spectroscopy - HOHAHA-HMQC 3D HOHAHA relayed HMQC - HSQC 2D heteronuclear single-quantum correlation spectroscopy - IPTG isopropyl thiogalactoside - NOESY 2D nuclear Overhauser enhancement spectroscopy - NOESY-HSQC 3D NOESY relayed HSQC - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP trimethyl silyl propionate  相似文献   

3.
Summary The backbone 1H and 15N resonances of the N-terminal SH3 domain of the Drosophila signaling adapter protein, drk, have been assigned. This domain is in slow exchange on the NMR timescale between folded and predominantly unfolded states. Data were collected on both states simultaneously, on samples of the SH3 in near physiological buffer exhibiting an approximately 1:1 ratio of the two states. NMR methods which exploit the chemical shift dispersion of the 15N resonances of unfolded states and pulsed field gradient water suppression approaches for avoiding saturation and dephasing of amide protons which rapidly exchange with solvent were utilized for the assignment.Abbreviations 2D, 3D two-, three-dimensional - drkN SH3 N-terminal SH3 domain of Drosophila drk - HSQC heteronuclear single-quantum spectroscopy - NOE nuclear Overhauser enhancement - SH3 Src homology domain 3 - TOCSY total correlation spectroscopy  相似文献   

4.
The complete sequence-specific assignments of resonances in the1H-NMR spectrum of huwentoxin-I from the Chinese bird spider,Selenocosmia huwena, is described. A combination of two-dimensional NMR experiments including 2D-COSY, 2D-NOESY, and 2D-TOCSY has been employed on samples of the toxin dissolved in D2O and in H2O for assignment purposes. Protons belonging to spin systems for each of the 33 amino acids were identified. The sequence-specific assignments were facilitated by the identification ofd N connectivities on the fingerprint regions of the COSY and NOESY spectra and were supported by the identification ofd NN andd N connectivities in the TOCSY and NOESY spectra. These studies provide a basis for the determination of the solution-phase conformation of this toxin.Abbreviations HWTX-I huwentoxin-I - 2D two-dimensional - COSY 2D homonuclear correlation spectroscopy - NOE nuclear Overhauser enhancement - NOESY 2D nuclear Overhauser enhancement spectroscopy - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP sodium 3-(trimethyl-silyl)propionate-d4 - EDTA ethylenediaminetetraacetic acid  相似文献   

5.
Summary A method for measuring three-bond 13C-1H scalar coupling constants across glycosidic bonds in a cyclic (12)-glucan icosamer is presented. This oligosaccharide molecule, with its high degree of symmetry, represents a particular challenge for NMR spectroscopy to distinguish inter-residue from intra-residue heteronuclear coupling effects. Chemically equivalent H2 protons in adjacent glucosyl residues are distinguished on the basis of their different through-space, dipolar interactions with the anomeric protons (H1). The strong NOE contact between anomeric (H1) and aglyconic (H2) protons permits the selective observation of the inter-residue heteronuclear couplings 3JC1H2 and 3JC2H1 in a natural-abundance 13C-1-half-filtered {1H,1H} ROESY experiment.Abbreviations COSY scalar correlated spectroscopy - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - ROESY rotating-frame NOE spectroscopy  相似文献   

6.
Summary Heteronuclear 2D (13C, 1H) and (15N, 1H) correlation spectra of (13C, 15N) fully enriched proteins can be acquired simultaneously with virtually no sensitivity loss or increase in artefact levels. Three pulse sequences are described, for 2D time-shared or TS-HSQC, 2D TS-HMQC and 2D TS-HSMQC spectra, respectively. Independent spectral widths can be sampled for both heteronuclei. The sequences can be greatly improved by combining them with field-gradient methods. By applying the sequences to 3D and 4D NMR spectroscopy, considerable time savings can be obtained. The method is demonstrated for the 18 kDa HU protein.Abbreviations HMQC heteronuclear multiple-quantum coherence spectroscopy - HSQC heteronuclear single-quantum coherence spectroscopy - HSMQC heteronuclear single- and multiple-quantum coherence spectroscopy - NOESY nuclear Overhauser enhancement spectroscopy  相似文献   

7.
The proton and nitrogen (15NH-H alpha-H beta) resonances of bacteriophage T4 lysozyme were assigned by 15N-aided 1H NMR. The assignments were directed from the backbone amide 1H-15N nuclei, with the heteronuclear single-multiple-quantum coherence (HSMQC) spectrum of uniformly 15N enriched protein serving as the master template for this work. The main-chain amide 1H-15N resonances and H alpha resonances were resolved and classified into 18 amino acid types by using HMQC and 15N-edited COSY measurements, respectively, of T4 lysozymes selectively enriched with one or more of alpha-15N-labeled Ala, Arg, Asn, Asp, Gly, Gln, Glu, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, or Val. The heteronuclear spectra were complemented by proton DQF-COSY and TOCSY spectra of unlabeled protein in H2O and D2O buffers, from which the H beta resonances of many residues were identified. The NOE cross peaks to almost every amide proton were resolved in 15N-edited NOESY spectra of the selectively 15N enriched protein samples. Residue specific assignments were determined by using NOE connectivities between protons in the 15NH-H alpha-H beta spin systems of known amino acid type. Additional assignments of the aromatic proton resonances were obtained from 1H NMR spectra of unlabeled and selectively deuterated protein samples. The secondary structure of T4 lysozyme indicated from a qualitative analysis of the NOESY data is consistent with the crystallographic model of the protein.  相似文献   

8.
Summary The1H NMR signals of the heme methyl, propionate and related chemical groups of cytochromec 3 fromDesulfovibrio vulgaris Miyazaki F (D.v. MF) were site-specifically assigned by means of ID NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the site-specific assignments of the hemes with the highest and second-lowest redox potentials reported by Fan et al. (Biochemistry,29 (1990) 2257–2263). The site-specific heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val18. All the results contradicted the heme assignments forD.v. MF cytochromec 3 made on the basis of electron spin resonance (Gayda et al. (1987)FEBS Lett.,217 57–61). Based on these assignments, the interaction of cytochromec 3 withD.v. MF ferredoxin I was investigated by NMR. The major interaction site of cytochromec 3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochromec 3 molecules per monomer of ferredoxin I and 108 M–2 (at 53 mM ionic strength and 25°C), respectively.  相似文献   

9.
Human copper-cobalt superoxide dismutase in the reduced form has been investigated through 1H NMR techniques. The aim is to monitor the structural properties of this derivative and to compare them with those of reduced and oxidized native superoxide dismutases. The observed signals of the cobalt ligands have been assigned as well as the signals of the histidines bound to copper(I). The latter signals experience little pseudocontact shifts which allow a rough orientation of the magnetic susceptibility tensor in the molecular frame. The connectivities indicate that, although the histidine bridge is broken in the reduced form, the interproton distances between ligands of both ions are essentially the same.Abbreviations WEFT water eliminated Fourier transform - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - SOD superoxide dismutase - E2Co(II)SOD SOD with empty copper site (E=empty) and with cobalt(II) in the Zinc(II) site Offprint requests to: I. Bertini  相似文献   

10.
Based on the HSQC scheme, we have designed a 2D heterocorrelated experiment which combines constant time (CT) 13C and variable time (VT) 15N chemical shift labelling. Although applicable to all carbons, this mode is particularly suitable for simultaneous recording of methyl-carbon and nitrogen chemical shifts at high digital resolution. The methyl carbon magnetisation is in the transverse plane during the whole CT period (1/JCC=28.6 ms). The magnetisation originating from NH protons is initially stored in the 2HzNz state, then prior to the VT chemical shift labelling period is converted into 2HzNy coherence. The VT -15N mode eliminates the effect of 1 J N,CO and 1,2 J N,CA coupling constants without the need for band-selective carbon pulses. An optional editing procedure is incorporated which eliminates signals from CH2 groups, thus removing any potential overlap with the CH3 signals. The CT-13CH3,VT-15N HSQC building block is used to construct two 3D experiments: 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH. Combined use of these experiments yields proton and heteronuclear chemical shifts for moieties experiencing NOEs with CH3 and NH protons. These NOE interactions are resolved as a consequence of the high digital resolution in the carbon and nitrogen chemical shifts of CH3 and NH groups, respectively. The techniques are illustrated using a double labelled sample of the CH domain from calponin.  相似文献   

11.
Summary The 1H, 13C and 15N NMR resonances of the backbone of serine protease PB92 have been assigned. This 269-residue protein is one of the largest monomeric proteins assigned so far. The amount and quality of information available suggest that even larger proteins could be assigned with present methods. Measured chemical shifts show excellent agreement with the secondary structure.Abbreviations 2D/3D two-/three-dimensional - HSQC Heteronuclear Single Quantum Coherence - TOCSY total correlation spectroscopy - NOE nuclear Overhauser effect Supplementary material available from the authors: One table containing the backbone 15N, 1HN, 13CO, 13CO and 1H assignments for serine protease PB92.  相似文献   

12.
Precision in the determination of the 3D structures of proteins by NMR depends on obtaining an adequate number of NOE restraints. Ambiguity in the assignment of NOE cross peaks between aromatic and other protons is an impediment to high quality structure determination. Two pulse sequences, 3D Haro-NOESY-CH3NH and 3D Caro-NOESY-CH3NH, based on a modification of a technique for simultaneous detection of 13C-1H (of CH3) and 15N-1H correlations in one measurement, are proposed in the present work. These 3D experiments, which are optimized for resolution in the 13C and 15N dimensions, provide NOE information between aromatic protons and methyl or amide protons. CH2 moieties are filtered out and the CH groups in aromatic rings are selected, allowing their NOE cross peaks to be unambiguously assigned. Unambiguous NOEs connecting aromatic and methyl or amide protons will provide important restraints for protein structure calculations.  相似文献   

13.
This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray.  相似文献   

14.
Summary Antibody heavy chain variable domains (VH) lacking their light chain domain (VL) partner are prime candidates for the design of minimum-size immunoreagents. To obtain structural information about isolated VH domains, a human VH was labelled with 15N or doubly labelled with both 15N and 13C and was studied by heteronuclear nuclear magnetic resonance spectroscopy. Most (90%) of the 1H and 15N main-chain signals were assigned through two-dimensional TOCSY and NOESY experiments on the unlabelled VH and three-dimensional heteronuclear multiple quantum correlation TOCSY and NOESY experiments on the 15N-labelled VH. Four short stretches of the polypeptide chain could only be assigned on the basis of three-dimensional HNCA and HN(CO)CA experiments on the 13C-/15N-labelled protein. Long-range interstrand backbone NOEs suggest the presence of two adjacent -sheets formed by altogether nine antiparallel -strands. 3JH NHC coupling constants and the location of slowly exchanging backbone amides support this interpretation. The secondary structure of the isolated VH is identical to that of heavy chain variable domains in intact antibodies, where VH domains are packed against a VL domain. The backbone assignments of the VH made it possible to locate its Protein A binding site. Chemical shift movements after complexing with the IgG binding fragment of Protein A indicate binding through one of the two -sheets of the VH. This -sheet is solvent exposed in intact antibodies. The Protein A binding site obviously differs from that on the Fc portion of immunoglobulins and is unique to members of the human VHIII gene subgroup.Abbreviations CDR complementarity determining region - CHAPS [(cholamidopropyl)-dimethylammonio]-1-propanesulfonate - DQF-COSY double-quantum-filtered correlated spectroscopy - Fab antigen binding antibody fragment - Fc crystallisable antibody fragment - Fv heterodimer of VH and VL - H1 (2, 3) hypervariable loop 1 (2, 3) - IgG immunoglobulin G - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - HMQC heteronuclear multiple quantum correlation spectroscopy - HSQC heteronuclear single quantum correlation spectroscopy - scFv single chain Fv - TOCSY total correlation spectroscopy - TPPI time-proportional phase incrementation - VH antibody heavy chain variable region - VL antibody light chain variable region. Mutants are denoted by the wild-type amino acid (one-letter code), follwed by the residue number and the new amino acid  相似文献   

15.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

16.
Summary Application of 1H 2D NMR methods to solubilized membrane proteins and peptides has up to now required the use of selectively deuterated detergents. The unavailability of any of the common biochemical detergents in deuterated form has therefore limited to some extent the scope of this approach. Here a 1H NMR method is described which allows structure determination of membrane peptides and small membrane proteins by 1H 2D NMR in any type of non-deuterated detergent. The approach is based on regioselective excitation of protein resonances with DANTE-Z or spin-pinging pulse trains. It is shown that regioselective excitation of the amide-aromatic region of solubilized membrane proteins and peptides leads to an almost complete suppression of the two orders of magnitude higher contribution of the protonated detergent to the 1H NMR spectrum. Consistently TOCSY, COSY and NOESY sequences incorporating such regioselective excitation in the F2 dimension yield protein 1H 2D NMR spectra of quality comparable to those obtained in deuterated detergents. Regioselective TOCSY and NOESY spectra display all through-bond and through-space correlations within amide-aromatic protons and between these protons and aliphatic and -protons. Regioselective COSY spectra provide scalar coupling constants between amide and -protons. Application of the method to the membrane-active peptide mastoparan X, solubilized in n-octylglucoside, yields complete sequence-specific assignments and extensive secondary structure-related spatial proximities and coupling constants. It is shown that mastoparan adopts an -helical conformation when bound to nonionic detergent micelles. The present method is expected to increase the applicability of 1H solution NMR methods to membrane proteins and peptides.Abbreviations 2D NMR two-dimensional NMR - COSY correlated spectroscopy - DANTE delays alternating nutations for tailored excitation - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy  相似文献   

17.
A triple-resonance pulse scheme is described which records15N, NH correlations of residues that immediately follow amethyl-containing amino acid. The experiment makes use of a15N, 13C and fractionally deuterated proteinsample and selects for CH2D methyl types. The experiment isthus useful in the early stages of the sequential assignment process as wellas for the confirmation of backbone 15N, NH chemical shiftassignments at later stages of data analysis. A simple modification of thesequence also allows the measurement of methyl side-chain dynamics. This isparticularly useful for studying side-chain dynamic properties in partiallyunfolded and unfolded proteins where the resolution of aliphatic carbon andproton chemical shifts is limited compared to that of amide nitrogens.  相似文献   

18.
Summary Sequence-specific 1H and 15N resonance assignments have been made for 137 of the 146 nonprolyl residues in oxidized Desulfovibrio desulfuricans [Essex 6] flavodoxin. Assignments were obtained by a concerted analysis of the heteronuclear three-dimensional 1H-15N NOESY-HMQC and TOCSY-HMQC data sets, recorded on uniformly 15N-enriched protein at 300 K. Numerous side-chain resonances have been partially or fully assigned. Residues with overlapping 1HN chemical shifts were resolved by a three-dimensional 1H-15N HMQC-NOESY-HMQC spectrum. Medium-and long-range NOEs, 3JNH coupling constants, and 1HN exchange data indicate a secondary structure consisting of five parallel -strands and four -helices with a topology similar to that of Desulfovibrio vulgaris [Hidenborough] flavodoxin. Prolines at positions 106 and 134, which are not conserved in D. vulgaris flavodoxin, contort the two C-terminal -helices.Abbreviations CSI chemical shift index - DQF-COSY double-quantum-filtered correlation spectroscopy - DIPSI decoupling in the presence of scalar interactions - FMN flavin mononucleotide - GARP globally optimized alternating phase rectangular pulse - HMQC heteronuclear multiple-quantum coherence - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy - TPPI time-proportional phase increments - TSP 3-(trimethylsilyl)propionic-2,2,3,3-d 4 acid, sodium salt  相似文献   

19.
The 17 base pair operator O R 3 oligonucleotide, which is the preferential binding site for the Cro repressor of phage , was studied by two-dimensional NMR spectroscopy. A sequential assignment procedure based on two-dimensional Nuclear Overhauser Effect (NOESY) and scalar coupling correlated (COSY) NMR spectroscopy, together with the knowledge of the oligodesoxynucleotide sequence, made it possible to assign the non-exhangeable base protons and the H1 and the H2-H2 sugar protons of the O R 3 operator DNA. The pattern of the observed NOE connectivities is consistent with a right-handed helical DNA structure. The base and sugar proton assignments provide the necessary information for further studies of the O R 3 operator — Cro repressor interaction.Abbreviations COSY correlated spectroscopy - FID free induction decay - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect spectroscopy - RD relaxation delay - TSP sodium 3-trimethylsilyl-(2,2,3,3-2H4)propionate - EDTA sodium ethylendiamine tetraacetate  相似文献   

20.
A pair of HN-methyl NOESY experiments that are based on simultaneous TROSY-type detection of amide and methyl groups is described. The preservation of cross-peak symmetry in the simultaneous 1H–15N/13CH3 NOE spectra enables straightforward assignments of HN-methyl NOE cross-peaks in large and complex protein structures. The pulse schemes are designed to preserve the slowly decaying components of both 1H–15N and methyl 13CH3 spin-systems in the course of indirect evolution (t 2) and acquisition period (t 3) of 3D NOESY experiments. The methodology has been tested on {U-[15N,2H]; Ileδ1-[13CH3]; Leu,Val-[13CH3,12CD3]}-labeled 82-kDa enzyme Malate Synthase G (MSG). A straightforward procedure that utilizes the symmetry of NOE cross-peaks in the time-shared 3D NOE data sets allows unambiguous assignments of more than 300 HN-methyl interactions in MSG from a single 3D data set providing important structural restraints for derivation of the backbone global fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号