首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

2.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

3.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

4.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

5.
The diterpene forskolin has been reported to activate adenylate cyclase in a manner consistent with an interaction at the catalytic unit. However, some of its actions are more consistent with an interaction at the coupling unit that links the hormone receptor to the adenylate cyclase activity. This report adds support to the latter possibility. Under conditions that lead to stimulation of adenylate cyclase in turkey erythrocyte membranes by GTP, forskolin also becomes more active. Additional evidence to support an influence of forskolin upon adenylate cyclase via the GTP-coupling protein N includes the following: (i) forskolin, at submaximal concentrations, leads to enhanced sensitivity and responsiveness of isoproterenol-dependent adenylate cyclase activity in turkey erythrocyte membranes; (ii) under specified conditions, the nucleotide GDP, an inhibitor of the stimulating nucleotide GTP and its analog, guanyl imidodiphosphate (Gpp(NH)p), also markedly inhibits the action of forskolin; (iii) both Gpp(NH)p and forskolin are associated with a decrease in agonist affinity for the beta-adrenergic receptor. However, actions of forskolin in the turkey erythrocyte are not identical to those of GTP: (i) forskolin is never as potent as Gpp(NH)p in activating adenylate cyclase; (ii) the magnitude of synergism between isoproterenol and forskolin is not equal to that observed with isoproterenol and Gpp(NH)p; (iii) at high concentrations, forskolin inhibits antagonist binding to the beta-receptor. Forskolin appears to have several sites of action in the turkey erythrocyte membrane, including an influence upon the adenylate cyclase regulatory protein N.  相似文献   

6.
C I Smith  G N Pierce  N S Dhalla 《Life sciences》1984,34(13):1223-1230
The effect of chronic experimental diabetes on the adenylate cyclase system (AC) in the rat heart was investigated. Rats were made diabetic by an intravenous injection of streptozotocin (65 mg/kg), hearts were removed 8 weeks later and washed cell particles were isolated. AC activity was measured in the absence and presence of different concentrations of forskolin, NaF, GTP analogue [Gpp(NH)p] or epinephrine. A significant depression in the epinephrine stimulated AC activity was observed in diabetic hearts. Basal AC activity and stimulation of AC with forskolin, NaF and Gpp(NH)p were not significantly different between control and diabetic preparations. These results indicate no apparent alterations in the regulatory or catalytic properties of AC in hearts from chronic diabetic rats. The observed depression in epinephrine stimulated AC activity may account for the depressed inotropic action of catecholamines in the diabetic cardiomyopathy.  相似文献   

7.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have compared the effects of Gpp[NH]p on adenylate cyclase activity of platelet membranes in SHR and WKY rats. In the presence of 50 microM forskolin, low concentrations of Gpp[NH]p (0.01 to 0.3 microM) inhibited the enzyme activity in both strains, but the maximal level of inhibition was significantly lower in SHR (- 20%). In the absence of forskolin, 0.1 microM Gpp[NH]p was inhibitory only in WKY and the adenylate cyclase activity was greater in hypertensive rats at this nucleotide concentration. Increasing Gpp[NH]p from 0.1 to 3 microM induced the same increase of enzyme activity in both strains. In SHR, GTP itself induced a lower inhibition of the enzyme stimulated by 50 microM forskolin or 0.1 microM prostaglandin E1. These results suggest that the modulatory effect of the guanine nucleotide inhibitory protein on adenylate cyclase may be reduced in platelets from SHR.  相似文献   

9.
The effect of forskolin on the hormonal (LH, FSH) activation and on the stimulation provided by other effectors (Gpp(NH)p,NaF) of the juvenile rat ovarian adenylate cyclase was investigated. Forskolin exhibited a synergistic action with LH, FSH and Gpp(NH)p but not with NaF. Addition of Ca2+ was inhibitory over a concentration range from 10(-5) to 10(-2) M whereas EGTA enhanced the response at 5.10(-5) M and inhibited it at higher concentration. The cAMP production was increased by addition of Mn2+ at low concentration (up to 5 mM) but markedly decreased at higher concentration (30 mM). FSH induced cAMP production was completely abolished at 30 mM Mn2+. The effect of vanadyl ion was very similar to that of Mn2+ Vanadate anion on the contrary was without effect on FSH stimulation.  相似文献   

10.
In this study we seek to elucidate the mechanism of hormone-independent adenylate cyclase stimulation by Gpp(NH)p in chicken erythrocyte membranes, and the inhibition of this stimulation by propranolol. Membrane treatment with isoprenaline + GMP increased Gpp(NH)p stimulation to near maximal levels [obtainable with isoprenaline + Gpp(NH)p], but reduced stimulation by NaF. The stimulation by Gpp(NH)p was stereoselectively inhibited by propranolol, but not by equal concentrations of the local anaesthetic lignocaine. Propranolol's inhibitory action was abolished following membrane treatment with isoprenaline/GMP. In contrast to its inhibition of Gpp(NH)p stimulation, propranolol did not alter Gpp(NH)p-mediated 3H-GDP release from membranes. The polyene antibiotic filipin, which uncouples receptor (R) from Gs, also abolished Gpp(NH)p stimulation and this effect was partly overcome by membrane treatment. These results are consistent with a model in which free R exists in equilibrium with precoupled R.Gs complexes in the absence of hormone. These complexes are activated by Gpp(NH)p and dissociated by antagonists. The existence of such complexes is a prerequisite for Gpp(NH)p stimulatory action.  相似文献   

11.
Activation of adenylate cyclase by forskolin in rat brain and testis   总被引:2,自引:0,他引:2  
Detergent-dispersed adenylate cyclase from rat cerebrum was detected in two components, one sensitive to Ca2+ and calmodulin and another sensitive to fluoride or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). The enzyme activity of both components was markedly augmented by forskolin assayed in the presence or absence of other enzyme activators (e.g., NaF, Gpp(NH)p, calmodulin). The catalytic subunit fraction in which G/F protein was totally lacking was also activated by forskolin. During 1-35 days of postnatal development, the basal adenylate cyclase activities in either cerebrum and cerebellum particulate preparations progressively increased. While the fluoride sensitivity of the cerebrum and cerebellum enzyme increased during postnatal development, the responsiveness to forskolin remained unaltered. There was no enhancement of soluble adenylate cyclase (from rat testis) by forskolin under the assay conditions in which there was a marked stimulatory action on the particulate enzyme. The results seen with the solubilized enzyme, with either Lubrol PX or cholate, indicate that the effects of forskolin on the cyclase do not require either G/F protein or calmodulin and the results of our study of brain enzymes support this view. Data on soluble testis cyclase (a poor or absent response to forskolin by this enzyme) imply that it lacks a protein (other than the catalytic unit) which could confer greater stimulation. The present results do not rule out an alternative explanation that forskolin stimulates adenylate cyclase by a direct interaction with the catalytic subunit, if the catalytic proteins do differ widely in various species of cells and their response to this diterpene.  相似文献   

12.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

13.
Gpp[NH]p, forskolin, and NaF were found to activate the activity of adenylate cyclase in vitro in the membrane fraction of the striatum. Gangliosides decreased the level of basal activity of the striatal adenylate cyclase. Gangliosides were shown to modulate the activity of the enzyme through changes in its catalytic properties.  相似文献   

14.
The mechanism by which chloride stimulates adenylate cyclase was investigated. Depletion of GDP increased basal adenylate cyclase activity and reduced the stimulation by isoprenaline. Restoration of bound GDP partially reversed these effects. Chloride stimulated cyclase activity by the same proportion in control, GDP-depleted and GDP-restored preparations, as did Gpp(NH)p. Fluoride increased adenylate cyclase activity to the same final level in both GDP-depleted and GDP-restored membranes; addition of Gpp(NH)p as well as fluoride had no further effect. Solubilisation of adenylate cyclase reduced the stimulatory effect of Gpp(NH)p only slightly, but greatly attenuated the activation by chloride. We conclude that chloride does not stimulate cyclase activity by an action on GDP exchange. Activation by chloride may be due to a disrupting or chaotropic effect on membrane/protein interactions.  相似文献   

15.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

16.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

17.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

18.
Forskolin-induced change of the size of adenylate cyclase   总被引:3,自引:0,他引:3  
Forskolin, a potent activator of cyclic AMP generating systems, has been proposed to act directly on the catalytic unit of adenylate cyclase. Nevertheless, some arguments indicate a possible role of the guanosine triphosphate-binding regulatory protein in forskolin action on adenylate cyclase. In this study, we have observed an increase in the apparent sedimentation coefficient of solubilized adenylate cyclase, elicited by forskolin, both in rat liver (from 6.4 +/- 0.1 to 7.2 +/- 0.1 S) and rat striatum (from 6.7 +/- 0.1 to 7.6 +/- 0.1 S). On both systems, a similar increase in the sedimentation coefficient was observed after preactivation of the enzyme with guanosine 5'-(beta, gamma-imido)triphosphate (Gpp(NH)p). In contrast to the Gpp(NH)p effect, the forskolin action was found to be reversible. Simultaneous pretreatments of adenylate cyclase with forskolin and Gpp(NH)p did not induce additive increases of the apparent sedimentation coefficient of adenylate cyclase. The modification of the size of solubilized adenylate cyclase was corroborated by gel filtration studies. In rat liver membranes, the Stokes radius of the solubilized enzyme increased from 59 +/- 1 A for basal state to 65 +/- 1 A for forskolin preactivated state. A possible explanation of our findings is that forskolin may stabilize the complex between the GTP-binding regulatory protein and the catalytic unit of adenylate cyclase in a reversible manner.  相似文献   

19.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regenerating system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP or GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of a nucleotide-regeneration system, addition of GDP to the adenylate cyclase assay mixture resulted in the parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparations possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrast to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic component of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

20.
The activation of bovine thyroid adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Gpp(NH)p has been studied using steady-state kinetic methods. This activation is complex and may be characterized by two Gpp(NH)p binding sites of different affinities with measured constants: Ka1 = 0.1 micro M and Ka2 = 2.9 micro M. GDP beta S does not completely inhibit the Gpp(NH)p activation: analysis of the data is consistent with a single GDP beta S inhibitory site which is competitive with the weaker Gpp(NH)p site. Guanine nucleotide effects upon F- activation of adenylate cyclase have been studied. When App(NH)p is the substrate, 10 micro M GTP along with 10 mM NaF gives higher activity than NaF alone, while GDP together with NaF inhibits the activity by 50% relative to NaF. These features are not observed when the complex is assayed with ATP in the presence of a nucleotide regenerating system or when analogs Gpp)NH)p or GDP beta S are used along with NaF. These effects were studied in three other membrane systems using App(NH)p as substrate: rat liver, rat ovary and turkey erythrocyte. No consistent pattern of guanine nucleotide effects upon fluoride activation could be observed in the different membrane preparations. Previous experiments showed that the size of soluble thyroid adenylate cyclase changed whether membranes were preincubated with Gpp(NH)p or NaF. This size change roughly corresponded to the molecular weight of the nucleotide regulatory protein. This finding, coupled with the present data, suggests that two guanine nucleotide binding sites may be involved in regulating thyroid cyclase and that these sites may be on different protein chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号