首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
2.
3.
4.
5.
Complete sequence determination of the mitochondrial (mt) genome of the sea scallop Placopecten magellanicus reveals a molecule radically different from that of the standard metazoan. With a minimum length of 30,680 nucleotides (nt; with one copy of a 1.4 kilobase (kb) repeat) and a maximum of 40,725 nt, it is the longest reported metazoan mitochondrial DNA (mtDNA). More than 50% of the genome is noncoding (NC), consisting of dispersed, imperfectly repeated sequences that are associated with tRNAs or tRNA-like structures. Although the genes for atp8 and two tRNAs were not discovered, the genome still has the potential for encoding 46 genes (the additional genes are all tRNAs), 9 of which encode tRNAs for methionine. The coding portions appear to be evolving at a rate consistent with other members of the pectinid clade. When the NC regions containing “dispersed repeat families” are examined in detail, we reach the conclusion that transposition involving tRNAs or tRNA-like structures is occurring and is responsible for the large size and abundance of noncoding DNA in the molecule. The rarity of enlarged mt genomes in the face of a demonstration that they can exist suggests that a small, compact organization is an actively maintained feature of metazoan mtDNA. Reviewing Editor: Gail Simmons  相似文献   

6.
7.
8.
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.  相似文献   

9.
10.
Two cytoplasmic "petite" (rho-) clones of Saccharomyces cerevisiae have been selected for the retention of the aspartic acid tRNA gene. The two clones, designated DS200/A102 and DS200/A5, have tandemly repeated segments of mitochondrial DNA (mtDNA) with unit lengths of 1,000 and 6,400 base pairs, respectively. The DS200/A102 genome has a single tRNA gene with a 3'-CUG-5' anticodon capable of recognizing the 5'-GAC-3' and 5'-GAU-3' codons for aspartic acid. The mtDNA segment of DS200/A102 has been determined to represent the wild type sequence from 5.3 to 6.8 map units. The genome of DS200/A5 is more complex encompassing the region of wild type mtDNA from 3.5 to 12.7 units. A continuous sequence has been obtained from 3.5 to 8.6 units. In addition to the aspartic acid tRNA, this region codes for the tRNAUGCAla,tRNAUCUArg, tRNAACGArg, tRNAGCUSer,tRNAUCCGly and tRNAUUULys. The DNA sequence of the DS200/A5 genome has allowed us to deduce the secondary structures of the seven tRNAs and to assign precise map positions for their genes. All the tRNAs except tRNA GUCAsp exhibit most of the invariant features of prokaryotic and eukaryotic tRNAs. The aspartic acid tRNA has unusual D and T psi C loops. The structure of this tRNA is similar to the mitochondrial initiator tRNA of Neurospora crassa (Heckman, J.E., Hecker, L.I., Shwartzbach, S.D., Barnett, W.E., Baumstark, B., and RajBhandary, U.L. Cell 13, 83-95).  相似文献   

11.
The CCA-adding enzyme (ATP:tRNA adenylyltransferase or CTP:tRNA cytidylyltransferase (EC )) generates the conserved CCA sequence responsible for the attachment of amino acid at the 3' terminus of tRNA molecules. It was shown that enzymes from various organisms strictly recognize the elbow region of tRNA formed by the conserved D- and T-loops. However, most of the mammalian mitochondrial (mt) tRNAs lack consensus sequences in both D- and T-loops. To characterize the mammalian mt CCA-adding enzymes, we have partially purified the enzyme from bovine liver mitochondria and determined cDNA sequences from human and mouse dbESTs by mass spectrometric analysis. The identified sequences contained typical amino-terminal peptides for mitochondrial protein import and had characteristics of the class II nucleotidyltransferase superfamily that includes eukaryotic and eubacterial CCA-adding enzymes. The human recombinant enzyme was overexpressed in Escherichia coli, and its CCA-adding activity was characterized using several mt tRNAs as substrates. The results clearly show that the human mt CCA-adding enzyme can efficiently repair mt tRNAs that are poor substrates for the E. coli enzyme although both enzymes work equally well on cytoplasmic tRNAs. This suggests that the mammalian mt enzymes have evolved so as to recognize mt tRNAs with unusual structures.  相似文献   

12.
13.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

14.
The nucleotide sequence of yeast mitochondrial isoleucine- and methionine-elongator tRNA have been determined. Interestingly, long stretches of almost identical nucleotide sequences are found within these two tRNAs and also within the yeast mt tRNAMetf, suggesting that the 3 tRNAs may have arisen from a common ancestor. Both mt tRNAMetm and tRNAIle contain all the structural characteristics which are present in the standard cloverleaf, except that the mt tRNAMetm contains an extra unpaired nucleotide within the base-paired T psi C stem. This rather unusual feature may have an influence on the decoding properties of the C-A-U anticodon of mt tRNAMetm by conferring the ability to translate not only the codon A-U-G but also A-U-A.  相似文献   

15.
Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ0 cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.  相似文献   

16.
S Binder  V Knoop  A Brennicke 《Gene》1991,102(2):245-247
The genes encoding tRNA(TGASer) have been investigated in the mitochondrial (mt) genomes of Oenothera berteriana and Arabidopsis thaliana. Sequence analysis shows four nucleotide (nt) differences between the two dicots, but only two differences between each dicot and the available monocot sequences. Similarity comparisons identify these genes as encoding a native mt tRNA(TGASer), with less than 77% of the nt identical to the corresponding chloroplast tRNAs.  相似文献   

17.
18.
Two methionine tRNAs from yeast mitochondria have been purified. The mitochondrial initiator tRNA has been identified by formylation using a mitochondrial enzyme extract. E. coli transformylase however, does not formylate the yeast mitochondrial initiator tRNA. The sequence was determined using both 32P-in vivo labeled and 32P-end labeled mt tRNAf(Met). This tRNA, unlike N. crassa mitochondrial tRNAf(Met), has two structural features typical of procaryotic initiator tRNAs: (i) it lacks a Watson-Crick base-pair at the end of the acceptor stem and (ii) has a T-psi-C-A sequence in loop IV. However, both yeast and N. crassa mitochondrial initiator tRNAs have a U11:A24 base-pair in the D-stem unlike procaryotic initiator tRNAs which have A11:U24. Interestingly, both mitochondrial initiator tRNAs, as well as bean chloroplast tRNAf(Met), have only two G:C pairs next to the anticodon loop, unlike any other initiator tRNA whatever its origin. In terms of overall sequence homology, yeast mitochondrial tRNA(Met)f differs from both procaryotic or eucaryotic initiator tRNAs, showing the highest homology with N. crassa mitochondrial initiator tRNA.  相似文献   

19.
Cha SY  Yoon HJ  Lee EM  Yoon MH  Hwang JS  Jin BR  Han YS  Kim I 《Gene》2007,392(1-2):206-220
The complete 16,434-bp nucleotide sequence of the mitogenome of the bumble bee, Bombus ignitus (Hymenoptera: Apidae), was determined. The genome contains the base composition and codon usage typical of metazoan mitogenomes. An unusual feature of the B. ignitus mitogenome is the presence of five tRNA-like structures: two each of the tRNALeu(UUR)-like and tRNASer(AGN)-like sequences and one tRNAPhe-like sequence. These tRNA-like sequences have proper folding structures and anticodon sequences, but their functionality in their respective amino acid transfers remained uncertain. Among these sequences, the tRNALeu(UUR)-like sequence and the tRNASer(AGN)-like sequence are seemingly located within the A+T-rich region. This tRNASer(AGN)-like sequence is highly unusual in that its sequence homology is very high compared to the tRNAMet of other insects, including Apis mellifera, but it contains the anticodon ACT, which designates it as tRNASer(AGN). All PCG and rRNAs are conserved in positions observed most frequently in insect mitogenome structures, but the positions of the tRNAs are highly variable, presenting a new arrangement for an insect mitogenome. As a whole, the B. ignitus mitogenome contains the highest A+T content (86.9%) found in any of the complete insects mt sequences determined to date. All protein-coding sequences started with a typical ATN codon. Nine of the 13 PCGs have a complete termination codon (all TAA), but the remaining four genes terminate with the incomplete TA or T. All tRNAs have the typical clover-leaf structures of mt tRNAs, except for tRNASer(AGN), in which the DHU arm forms a simple loop. All anticodons of B. ignitus tRNAs are identical to those of A. mellifera. In the A+T-rich region, a highly conserved sequence block that was previously described in Orthoptera and Diptera was also present. The stem-and-loop structures that may play a role in the initiation of mtDNA replication were also found in this region. Phylogenetic analysis among three corbiculate tribes, represented by Melipona bicolor (Meliponini), A. mellifera (Apini), and B. ignitus (Bombini), showed the closest relationship between M. bicolor and B. ignitus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号