首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   

2.
Toxoplasmosis, a disease that affects humans and a wide variety of mammals is caused by Toxoplasma gondii, the obligate intracellular coccidian protozoan parasite. Most T. gondii research has focused on the rapidly growing invasive form, the tachyzoite, which expresses five major surface proteins attached to the parasite membrane by glycosylphosphatidylinositol (GPI) anchors. We have recently reported the purification and partial characterization of candidate precursor glycolipids (GPIs) from metabolically labeled parasites and have presented evidence that these GPIs have a linear glycan backbone sequence indistinguishable from the GPI core glycan of the major tachyzoite surface protein, P30. In this report, we describe a cell-free system derived from tachyzoite membranes which is capable of catalyzing GPI biosynthesis. Incubation of the membrane preparations with radioactive sugar nucleotides (GDP-[3H]mannose or UDP-[3H]GlcNAc) resulted in incorporation of radiolabeled into numerous glycolipids. By using a combination of chemical/enzymatic tests and chromatographic analysis, a series of incompletely glycosylated lipid species and mature GPIs have been identified. We have also established the involvement of Dol-P-mannose in the synthesis of T. gondii GPIs by demonstrating that the incorporation of [3H]mannose into the mannosylated GPIs is stimulated by dolichylphosphate and inhibited by amphomycin. In addition, increasing the concentration of nonradioactive GDP mannose resulted in a loss of radiolabel from the first easily detectable GPI precursor, GlcN-PI, and a concomittant appearance of the radio-activity into mannosylated glycolipids. Altogether, our data suggest that the GPI core glycan in T. gondii is assembled via sequential glycosylation of phosphatidylinositol, as proposed for the biosynthesis of GPIs in Trypanosoma brucei. In contrast to T. brucei, preliminary experiments indicate that the core glycan of some GPIs synthesized by the T. gondii cell-free system is modified by N-acetylgalactosamine similar to the situation for mammalian Thy-1.  相似文献   

3.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

4.
In common with many other plasma membrane glycoproteins of eukaryotic origin, the promastigote surface protease (PSP) of the protozoan parasite Leishmania contains a glycosyl-phosphatidylinositol (GPI) membrane anchor. The GPI anchor of Leishmania major PSP was purified following proteolysis of the PSP and analyzed by two-dimensional 1H-1H NMR, compositional and methylation linkage analyses, chemical and enzymatic modifications, and amino acid sequencing. From these results, the structure of the GPI-containing peptide was found to be Asp-Gly-Gly-Asn-ethanolamine-PO4-6Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol-1-PO4-(1-alkyl-2-acyl-glycerol). The glycan structure is identical to the conserved glycan core regions of the GPI anchor of Trypanosoma brucei variant surface glycoprotein and rat brain Thy-1 antigen, supporting the notion that this portion of GPIs are highly conserved. The phosphatidylinositol moiety of the PSP anchor is unusual, containing a fully saturated, unbranched 1-O-alkyl chain (mainly C24:0) and a mixture of fully saturated unbranched 2-O-acyl chains (C12:0, C14:0, C16:0, and C18:0). This lipid composition differs significantly from those of the GPIs of T. brucei variant surface glycoprotein and mammalian erythrocyte acetylcholinesterase but is similar to that of a family of glycosylated phosphoinositides found uniquely in Leishmania.  相似文献   

5.
We showed that the production of tumor necrosis factor (TNF) α by macrophages in response to Toxoplasma gondii glycosylphosphatidylinositols (GPIs) requires the expression of both Toll-like receptors TLR2 and TLR4, but not of their co-receptor CD14. Galectin-3 is a β-galactoside-binding protein with immune-regulatory effects, which associates with TLR2. We demonstrate here by using the surface plasmon resonance method that the GPIs of T. gondii bind to human galectin-3 with strong affinity and in a dose-dependent manner. The use of a synthetic glycan and of the lipid moiety cleaved from the GPIs shows that both parts are involved in the interaction with galectin-3. GPIs of T. gondii also bind to galectin-1 but with a lower affinity and only through the lipid moiety. At the cellular level, the production of TNF-α induced by T. gondii GPIs in macrophages depends on the expression of galectin-3 but not of galectin-1. This study is the first identification of a galectin-3 ligand of T. gondii origin, and galectin-3 might be a co-receptor presenting the GPIs to the TLRs on macrophages.  相似文献   

6.
Toxoplasma gondii is a ubiquitous parasitic protozoan that invades nucleated cells in a process thought to be in part due to several surface glycosylphosphatidylinositol (GPI)-anchored proteins, like the major surface antigen SAG1 (P30), which dominates the plasma membrane. The serine protease inhibitors phenylmethylsulfonyl fluoride and diisopropyl fluoride were found to have a profound effect on the T. gondii GPI biosynthetic pathway, leading to the observation and characterization of novel inositol-acylated mannosylated GPI intermediates. This inositol acylation is acyl-CoA-dependent and takes place before mannosylation, but uniquely for this class of inositol-acyltransferase, it is inhibited by phenylmethylsulfonyl fluoride. The subsequent inositol deacylation of fully mannosylated GPI intermediates is inhibited by both phenylmethylsulfonyl fluoride and diisopropyl fluoride. The use of these serine protease inhibitors allows observations as to the timing of inositol acylation and subsequent inositol deacylation of the GPI intermediates. Inositol acylation of the non-mannosylated GPI intermediate D-GlcNalpha1-6-D-myo-inositol-1-HPO4-sn-lipid precedes mannosylation. Inositol deacylation of the fully mannosylated GPI intermediate allows further processing, i.e. addition of GalNAc side chain to the first mannose. Characterization of the phosphatidylinositol moieties present on both free GPIs and GPI-anchored proteins shows the presence of a diacylglycerol lipid, whose sn-2 position contains almost exclusively an C18:1 acyl chain. The data presented here identify key novel inositol-acylated mannosylated intermediates, allowing the formulation of an updated T. gondii GPI biosynthetic pathway along with identification of the putative genes involved.  相似文献   

7.
Lipid X, a monosaccharide biosynthetic precursor of lipid A, has been chemically synthesized and was shown to induce bone marrow-derived macrophages to release tumor necrosis factor (TNF) in vitro. However, relatively high amounts of lipid X were necessary for induction, and the levels of TNF were much less than those induced by small amounts of lipid A itself or LPS. Lipid X prepared by extraction of Escherichia coli mutants induced higher levels of TNF than the chemically synthesized material, but this is probably partially due to amounts of impurities in the extracted material. Pretreatment of macrophages with IFN-gamma resulted in the release of higher amounts of TNF on subsequent induction with either LPS or lipid X. In contrast, pretreatment of macrophages with LPS induced hyporesponsiveness for TNF production on subsequent rechallenge with LPS. Lipid X, on the other hand, was incapable of making macrophages hyporesponsive for TNF production.  相似文献   

8.
Glycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH). The GPI intermediates of both strains were structurally similar, however the abundance of two of six GPI intermediates was significantly reduced in the PTG strain. The side-by-side comparison of GPI-anchor content revealed that the PTG strain had only ∼34% of the protein-free GPIs as well as ∼70% of the GPI-anchored proteins with significantly lower rates of protein N-glycosylation compared to the RH strain. All mature GPIs from both strains induced comparable secretion levels of TNF-α and IL-12p40, and initiated TLR4/MyD88-dependent NF-κBp65 activation in macrophages. Taken together, these results demonstrate that PTG and RH strains differ in their GPI biosynthesis and possess significantly different GPI-anchor content, while individual GPI species of both strains induce similar biological functions in macrophages.  相似文献   

9.
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.  相似文献   

10.
Toxoplasma gondii is an intracellular parasite able to both promote and inhibit apoptosis. T. gondii renders infected cells resistant to programmed cell death induced by multiple apoptotic triggers. On the other hand, increased apoptosis of immune cells after in vivo infection with T. gondii may suppress the immune response to the parasite. Glycosylphosphatidylinositol (GPI)-anchored proteins dominate the surface of T. gondii tachyzoites and GPIs are involved in the pathogenicity of protozoan parasites. In this report, we determine if GPIs are responsible for inhibition or induction of host cell apoptosis. We show here that T. gondii GPIs fail to block apoptosis that was triggered in human-derived cells via extrinsic or intrinsic apoptotic pathways. Furthermore, characteristics of apoptosis, e.g. caspase-3/7 activity, phosphatidylserine exposition at the cell surface or DNA strand breaks, were not observed in the presence of T. gondii GPIs. These results indicate that T. gondii GPIs are not involved in survival or in apoptosis of host cells. This absence of effect on apoptosis could be a feature common to GPIs of other parasites.  相似文献   

11.
12.
Activated macrophages produce tumor necrosis factor (TNF), a cytokine with anti-tumor and anti-plasmodia activities. This study revealed that recombinant TNF (rTNF) inhibits intracellular multiplication of blood trypomastigotes of Trypanosoma cruzi in murine peritoneal macrophages. rTNF did not have any apparent direct effect on the survival of extracellular T. cruzi or on its ability to infect mammalian cells. The degree of inhibition of the intracellular multiplication of T. cruzi was found to be a function of the time of exposure of the infected cells to rTNF. rTNF induced a comparable effect when different strains of the parasite were used. In contrast to its activity on T. cruzi, rTNF did not affect intracellular multiplication of Toxoplasma gondii tachyzoites or bradyzoites in normal murine peritoneal macrophages or in human fibroblasts. Killing of Toxoplasma tachyzoites by activated macrophages was not enhanced by rTNF.  相似文献   

13.
Many eukaryotic surface glycoproteins, including the variant surface glycoproteins (VSGs) of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosylphosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. We have reported the purification and partial characterization of candidate precursor glycolipids (P2 and P3) from T. brucei. P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The anchors on mature VSGs contain a heterogenously branched galactose structure attached alpha 1-3 to the mannose residue adjacent to the glucosamine. We report the identification of free GPIs that appear to be similarly galactosylated. These glycolipids contain diacylglycerol and alpha-galactosidase-sensitive glycan structures which are indistinguishable from the glycans derived from galactosylated VSG GPI anchors. We discuss the relevance of these galactosylated GPIs to the biosynthesis of VSG GPI anchors.  相似文献   

14.
Glycosylphosphatidylinositols (GPIs) are the most abundant molecules present in the membranes of the parasitic protozoa Leishmania responsible for multiple forms of leishmaniasis. Among the prominent biological activities displayed by the major Leishmania GPIs [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] is the inhibition of macrophage functions such as the protein kinase C (PKC)-dependent signaling pathway. The bioactivity of Leishmania GPIs is in contrast to Trypanosoma brucei and Plasmodium falciparum GPIs, which activate the macrophage functions. To address the question as to which structural domain of Leishmania GPIs is responsible for dramatic down-regulation of PKC-dependent transient c-fos expression, the chemically synthesized defined alkylacylglycerolipids domain of corresponding GPIs, and LPG and GIPLs isolated from Leishmania donovani, were evaluated for inhibition of PKC and c-fos expression in macrophages. The results presented here demonstrate that the unusual lipid domain of Leishmania GPIs is primarily responsible for inhibition of PKC-dependent transient c-fos expression.  相似文献   

15.
A variety of eukaryotic cell surface proteins, including the variant surface glycoproteins of African trypanosomes, rely on a covalently attached lipid, glycosylphosphatidylinositol (GPI), for membrane attachment. GPI anchors are synthesized in the endoplasmic reticulum by stepwise glycosylation of phosphatidylinositol (via UDP-GlcNAc and dolichol-P-mannose) followed by the addition of phosphoethanolamine. The experiments described in this paper are aimed at identifying the biosynthetic origin of the terminal phosphoethanolamine group. We show that trypanosome GPIs can be labelled via CDP-[3H]ethanolamine or [beta-32P]CDP-ethanolamine in a cell-free system, indicating that phosphoethanolamine is acquired en bloc. In pulse-chase experiments with CDP-[3H]ethanolamine we show that the GPI phosphoethanolamine is not derived directly from CDP-ethanolamine, but instead from a relatively stable metabolite, such as phosphatidylethanolamine (PE), generated from CDP-ethanolamine in the cell-free system. To test the possibility that PE is the immediate donor of the GPI phosphoethanolamine moiety, we describe metabolic labelling experiments with [3H]serine and show that GPIs can be labelled in the absence of detectable radiolabelled CDP-ethanolamine, presumably via [3H]PE generated from [3H]phosphatidylserine (PS). The data support the proposal that the terminal phosphoethanolamine group in trypanosome GPIs is derived from PE.  相似文献   

16.
17.
The glycosylphosphatidylinositol (GPI) anchors of Plasmodium falciparum are thought to be etiologic agents of malaria based on their ability to induce proinflammatory cytokine production by macrophages and cause symptoms that resemble severe malaria illness in animals. This review summarizes the published information on the structures of P. falciparum GPIs, structure-activity relationship, and anti-GPI antibodies in the host.  相似文献   

18.
The glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum have been shown to activate macrophages and produce inflammatory responses. The activation of macrophages by malarial GPIs involves engagement of Toll like receptor 2 (TLR2) resulting in the intracellular signaling and production of cytokines. In the present study, we investigated the requirement of TLR1 and TLR6 for the TLR2 mediated cell signaling and proinflammatory cytokine production by macrophages. The data demonstrate that malarial GPIs, which contain three fatty acid substituents, preferentially engage TLR2–TLR1 dimeric pair than TLR2–TLR6, whereas their derivatives, sn-2 lyso GPIs, that contain two fatty acid substituents recognize TLR2–TLR6 with slightly higher selectivity as compared to TLR2–TLR1 heteromeric pair. These results are analogous to the recognition of triacylated bacterial and diacylated mycoplasmal lipoproteins, respectively, by TLR2–TLR1 and TLR2–TLR6 dimers, suggesting that the lipid portions of the microbial GPI ligands play essential role in determining their TLR recognition specificity.  相似文献   

19.
The glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum are believed to contribute to the pathogenesis of malaria by inducing the secretion of proinflammatory cytokines by macrophages. Previous studies have shown that P. falciparum GPIs elicit toxic immune responses by protein tyrosine kinase (PTK)- and protein kinase C (PKC)-mediated cell signaling pathways, which are activated by the carbohydrate and acyl moieties of the intact GPIs, respectively. In this study, we show that induction of TNF-alpha by P. falciparum GPIs in macrophages is mediated by the recognition of the distal fourth mannose residue. This event is critical but not sufficient for the productive cell signaling; interaction by the acylglycerol moiety of GPIs is also required. These novel interactions are coupled to previously demonstrated PTK and PKC pathways, since the specific inhibitors of these kinases effectively blocked the GPI-induced TNF-alpha production. Surprisingly, sn-2 lyso-GPIs were also able to elicit TNF-alpha secretion. Contrary to the prevailing notion, GPIs are neither inserted to the plasma membranes nor endocytosized. Thus, this study defines the GPI structural requirements and reveals a novel mechanism for the outside-in activation of cell signaling by P. falciparum GPIs in inducing proinflammatory responses.  相似文献   

20.
Glycosylphosphatidylinositols (GPIs) are ubiquitous glycolipids in eukaryotes. In the protozoan Leishmania major, GPIs occur "free" or covalently linked to proteins (e.g., gp63) and polysaccharides. While some free GPIs are detected on the plasma membrane, specific sites where GPIs accumulate intracellularly are unknown in most cells, although the glycolipids are synthesized within the secretory system. Herein, we describe a protocol for identifying intracellular sites of GPI accumulation by using alpha-toxin (from Clostridium septicum). Alpha-toxin bound to gp63 and GPIs from L. major. Intracellular binding sites for alpha-toxin were determined in immunofluorescence assays after removal of GPI-anchored macromolecules (e.g., gp63) from the plasma membrane of fixed cells by using detergent. Endosomes were a major site for GPI accretion in L. major. GPI-less gp63 was detected at the endoplasmic reticulum. In studies with live parasites, alpha-toxin killed L. major with a 50% lethal concentration of 0.77 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号