首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1990,111(5):2077-2088
Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.  相似文献   

2.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

3.
The smooth muscle cell is the predominant cell type of the arterial media. In the adult vascular system, smooth muscle cells are found primarily in the contractile phenotype, but following injury or during atherosclerotic plaque formation the secretory synthetic phenotype is expressed. Recently it has been shown that gap junction connexin43 messenger RNA levels are six times higher in cultured smooth muscle cells in the synthetic phenotype than in intact aorta. We have modulated rabbit aortic smooth muscle cells in culture between the synthetic phenotype and one resembling the contractile phenotype, and correlated gap junction expression with phenotype. A dual labelling technique with antibodies against smooth muscle myosin and a synthetic peptide constructed to match a portion of the connexin43 gap junction protein was used for these experiments. Gap junctions are numerous between synthetic phenotype cells but few are observed between contractile cells. Rat aortic smooth muscle cells were also cultured and the growth and structure of gap junctions followed in the synthetic phenotype by use of freeze-fracture electron microscopy and immunohistochemical techniques. Junctional plaques are similar in structure to those observed in cardiac muscle, their size and number increasing with time in culture. The increased numbers of gap junctions between synthetic phenotype smooth muscle cells may be important during vessel development, following injury, or in atherosclerotic plaque formation.  相似文献   

4.
Gap junction-mediated intercellular communication in the immune system   总被引:4,自引:0,他引:4  
Immune cells are usually considered non-attached blood cells, which would exclude the formation of gap junctions. This is a misconception since many immune cells express connexin 43 (Cx43) and other connexins and are often residing in tissue. The role of gap junctions is largely ignored by immunologists as is the immune system in the field of gap junction research. Here, the current knowledge of the distribution of connexins and the function of gap junctions in the immune system is discussed. Gap junctions appear to play many roles in antibody productions and specific immune responses and may be important in sensing danger in tissue by the immune system. Gap junctions not only transfer electrical and metabolical but also immunological information in the form of peptides for a process called cross-presentation. This is essential for proper immune responses to viruses and possibly tumours. Until now only 40 research papers on gap junctions in the immune system appeared and this will almost certainly expand with the increased mutual interest between the fields of immunology and gap junction research.  相似文献   

5.
Although gap junctions are widely expressed in the developing central nervous system, the role of electrical coupling of neurons and glial cells via gap junctions in the spinal cord in adults is largely unknown. We investigated whether gap junctions are expressed in the mature spinal cord of the mudpuppy and tested the effects of applying gap junction blocker on the walking-like activity induced by NMDA or glutamate in an in vitro mudpuppy preparation. We found that glial and neural cells in the mudpuppy spinal cord expressed different types of connexins that include connexin 32 (Cx32), connexin 36 (Cx36), connexin 37 (Cx37), and connexin 43 (Cx43). Application of a battery of gap junction blockers from three different structural classes (carbenexolone, flufenamic acid, and long chain alcohols) substantially and consistently altered the locomotor-like activity in a dose-dependent manner. In contrast, these blockers did not significantly change the amplitude of the dorsal root reflex, indicating that gap junction blockers did not inhibit neuronal excitability nonselectively in the spinal cord. Taken together, these results suggest that gap junctions play a significant modulatory role in the spinal neural networks responsible for the generation of walking-like activity in the adult mudpuppy.  相似文献   

6.
Rat heart and other organs contain mRNA coding for connexin43, a polypeptide homologous to a gap junction protein from liver (connexin32). To provide direct evidence that connexin43 is a cardiac gap junction protein, we raised rabbit antisera directed against synthetic oligopeptides corresponding to two unique regions of its sequence, amino acids 119-142 and 252-271. Both antisera stained the intercalated disc in myocardium by immunofluorescence but did not react with frozen sections of liver. Immunocytochemistry showed anti-connexin43 staining of the cytoplasmic surface of gap junctions in isolated rat heart membranes but no reactivity with isolated liver gap junctions. Both antisera reacted with a 43-kD polypeptide in isolated rat heart membranes but did not react with rat liver gap junctions by Western blot analysis. In contrast, an antiserum to the conserved, possibly extracellular, sequence of amino acids 164-189 in connexin32 reacted with both liver and heart gap junction proteins on Western blots. These findings support a topological model of connexins with unique cytoplasmic domains but conserved transmembrane and extracellular regions. The connexin43-specific antisera were used by Western blots and immunofluorescence to examine the distribution of connexin43. They demonstrated reactivity consistent with gap junctions between ovarian granulosa cells, smooth muscle cells in uterus and other tissues, fibroblasts in cornea and other tissues, lens and corneal epithelial cells, and renal tubular epithelial cells. Staining with the anti-connexin43 antisera was never observed to colocalize with antibodies to other gap junctional proteins (connexin32 or MP70) in the same junctional plaques. Because of limitations in the resolution of the immunofluorescence, however, we were not able to determine whether individual cells ever simultaneously express more than one connexin type.  相似文献   

7.
Dendritic cells (DCs) in culture express at least connexin43, a protein subunit of gap junctions, and form gap junction channels, which could be important for T-cells activation. Here, we evaluated whether DCs express connexins in vivo and also to identify components of their microenvironment that regulate the functional expression of gap junctions. In vivo studies were performed in lymph nodes of mice under control conditions or after skeletal muscle damage. In double immunolabeling studies, connexin45 was frequently detected in DEC205(+) DCs in lymph nodes of control animals, whereas connexin43 was rarely found in DCs. However, connexin43 was upregulated in DCs after skeletal muscle damage. Upregulation of connexin43 gene expression by tissue damage was also confirmed in mice carrying a beta-galactosidase reporter gene in a connexin43 allele. The effect of several cytokines on the expression of functional gap junctions between cultured DCs was also tested. Under control conditions, cultured DCs did not communicate via gap junctions. However, after treatment with keratinocyte-conditioned medium or cytokine mixtures containing at least TNF-alpha and IL-1beta, they became transiently coupled through a pathway sensitive to octanol, a gap junction blocker. Cellular coupling induced by effective cytokine mixtures was prevented by IL-6. Single cytokines (TNF-alpha, IL-1beta, IFN-gamma, or IL-6) or other mixtures than the described above did not induce coupling via gap junctions. Increased levels of connexin43 and connexin45 protein and mRNA accompanied the appearance of cellular coupling. These studies provide demonstration of connexin expression and regulation by specific danger signals in DCs.  相似文献   

8.
Gap junction remodeling and cardiac arrhythmogenesis: cause or coincidence?   总被引:1,自引:0,他引:1  
Gap junctions, clusters of transmembrane channels that link adjoining cells, mediate myocyte-to-myocyte electrical coupling and communication. The component proteins of gap junction channels are termed connexins and, in in vitro expression systems, gap-junctional channels composed of different connexin types exhibit different biophysical properties. In common with other tissues, the heart expresses multiple connexin isoforms. Spatially defined patterns of expression of three connexin isoforms - connexin43, connexin40 and connexin45 - form the cell-to-cell conduction pathways responsible for the orderly spread of current flow that governs the normal cardiac rhythm. Remodeling of gap junction organization and connexin expression is a common feature of human heart disease conditions in which there is an arrhythmic tendency. This remodeling may take the form of disturbances in the distribution of gap junctions and/or quantitative alterations in connexin expression, notably reduced ventricular connexin43 levels. The idea that such changes may contribute to the development of a pro-arrhythmic substrate in the diseased heart has gained ground over the last decade. Recent studies using transgenic mice models have raised new opportunities to explore the significance of gap junction remodeling in the diseased heart.  相似文献   

9.
Innumerable toxic substances present in the environment inhibit gap junctions, intercellular membrane channels that play fundamental roles in coordinated function of cells and tissues. Included are persistent organochlorine compounds, which pose health risks to humans and animals owing to their widespread use, bioaccumulation, and ability to inhibit gap junction channel-mediated intercellular communication in liver, lung, skin, heart, and brain cells. In this study, the organochlorine xenobiotics dieldrin and endosulfan, at micromolar concentrations, were found to inhibit gap junction-mediated intercellular communication and induce hypophosphorylation of connexin 43 in cultured rat astrocytes, the predominant cell type in the brain coupled through gap junctions. This inhibition of gap junctional communication was substantially reduced by preincubation with chaetoglobosin K (ChK), a bioactive natural produce previously shown to have ras tumor suppressor activity. Chaetoglobosin K also prevented dieldrin and endosulfan-induced hypophosphorylation of connexin 43 and prevented dieldrin-induced connexin 43 plaque dissolution in both astrocytes and cultured liver epithelial cells. The results suggest that stabilization of the native, phosphorylated form of connexin 43 by ChK may contribute to its ability to prevent organochlorine-induced inhibition of gap junction-mediated communication and dissolution of gap junction plaques within the plasma membrane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Gap junctions and gap junction communication have long been recognized to play roles in tissue organization and remodeling through both cell autonomous and intercellular means. We hypothesized that these processes become dysregulated during pancreas cancer progression. Molecular and histological characterization of the gap junction protein, connexin43, during progression of pancreatic ductal adenocarcinoma could yield insight into how these events may contribute to or be modulated during carcinogenesis. In a mouse model of pancreatic ductal adenocarcinoma generated through targeted endogenous expression of Kras(G12D) in the murine pancreas, we examined the evolving expression and localization of connexin43. Overall, connexin43 expression increased over time, and its localization became more widespread. At early stages, connexin43 is found almost exclusively in association with the basolateral membrane of duct cells found in invasive lesions. Connexin43 became increasingly associated with the surrounding stroma over time. Connexin43 phosphorylation was also altered during tumorigenesis, as assessed by migrational changes of the protein in immunoblots. These data suggest a potential role for gap junctions and connexin43 in mediating interactions between and amongst the stromal and epithelial cells in pancreatic ductal adenocarcinoma.  相似文献   

11.
We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.  相似文献   

12.
We analyzed the pattern of gap junction protein (connexin) expression in vivo by indirect immunofluorescence. In normal rat lung sections, connexin (Cx)32 was expressed by type II cells, whereas Cx43 was more ubiquitously expressed and Cx46 was expressed by occasional alveolar epithelial cells. In response to bleomycin-induced lung injury, Cx46 was upregulated by alveolar epithelial cells, whereas Cx32 and Cx43 expression were largely unchanged. Given that Cx46 may form gap junction channels with either Cx43 or Cx32, we examined the ability of primary alveolar epithelial cells cultured for 6 days, which express Cx43 and Cx46, to form heterocellular gap junctions with cells expressing other connexins. Day 6 alveolar epithelial cells formed functional gap junctions with other day 6 cells or with HeLa cells transfected with Cx43 (HeLa/Cx43), but they did not communicate with HeLa/Cx32 cells. Furthermore, day 6 alveolar epithelial cells formed functional gap junction channels with freshly isolated type II cells. Taken together, these data are consistent with the notion that type I and type II alveolar epithelial cells communicate through gap junctions compatible with Cx43.  相似文献   

13.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

14.
Connexins (Cx), the protein subunits assembled into gap junction intercellular communication channels, are expressed in primary lymphoid organs and by circulating leukocytes. Human tonsil-derived T and B lymphocytes express Cx40 and 43; circulating human T, B, and NK lymphocytes express Cx43 and directly transfer between each other a low molecular dye indicative that functional gap junctions exist. We now identify specific properties in the immune system underwritten by gap junctions. Mixed lymphocytes cultured in the presence of two reagents with independent inhibitory action on gap junction communication, a connexin mimetic peptide and 18-alpha-glycyrrhetinic acid, markedly reduced the secretion of IgM, IgG, and IgA. The secretion of these immunoglobulins by purified B cells was also reduced by the two classes of gap junction inhibitors. Complex temporal inhibitory effects on the expression of mRNA encoding interleukins, especially IL-10, were also observed. The results indicate that intercellular signaling across gap junctions is an important component of the mechanisms underlying metabolic cooperation in the immune system.  相似文献   

15.
Intercellular communication may be modulated by the rather rapid turnover and degradation of gap junction proteins, since many connexins have half-lives of 1–3 h. While several morphological studies have suggested that gap junction degradation occurs after endocytosis, our recent biochemical studies have demonstrated involvement of the ubiquitin–proteasome pathway in proteolysis of the connexin43 polypeptide. The present study was designed to reconcile these observations by examining the degradation of connexin43-containing gap junctions in rat heart-derived BWEM cells. After treatment of BWEM cells with Brefeldin A to prevent transport of newly synthesized connexin43 polypeptides to the plasma membrane, quantitative confocal microscopy showed the disappearance of immunoreactive connexin43 from the cell surface with a half-life of 1 h. This loss of connexin43 immunoreactivity was inhibited by cotreatment with proteasomal inhibitors (ALLN, MG132, or lactacystin) or lysosomal inhibitors (leupeptin or E-64). Similar results were seen when connexin43 export was blocked with monensin. After treatment of BWEM cells with either proteasomal or lysosomal inhibitors alone, immunoblots showed accumulation of connexin43 in both whole cell lysates and in a 1% Triton X-100-insoluble fraction. Immunofluorescence studies showed that connexin43 accumulated at the cell surface in lactacystin-treated cells, but in vesicles in BWEM cells treated with lysosomal inhibitors. These results implicate both the proteasome and the lysosome in the degradation of connexin43-containing gap junctions.  相似文献   

16.
Gap junction number and size vary widely in cardiac tissues with disparate conduction properties. Little is known about how tissue-specific patterns of intercellular junctions are established and regulated. To elucidate the relationship between gap junction channel protein expression and the structure of gap junctions, we analyzed Cx43 +/- mice, which have a genetic deficiency in expression of the major ventricular gap junction protein, connexin43 (Cx43). Quantitative confocal immunofluorescence microscopy revealed that diminished Cx43 signal in Cx43 +/- mice was due almost entirely to a reduction in the number of individual gap junctions (226 +/- 52 vs. 150 +/- 32 individual gap junctions/field in Cx43 +/+ and +/- ventricles, respectively; P < 0.05). The mean size of an individual gap junction was the same in both groups. Immunofluorescence results were confirmed with electron microscopic morphometry. Thus when connexin expression is diminished, ventricular myocytes become interconnected by a reduced number of large, normally sized gap junctions, rather than a normal number of smaller junctions. Maintenance of large gap junctions may be an adaptive response supporting safe ventricular conduction.  相似文献   

17.
Gap junctions mediate direct cell-to-cell communication by forming channels that physically couple cells, thereby linking their cytoplasm, permitting the exchange of molecules, ions, and electrical impulses. Gap junctions are assembled from connexin (Cx) proteins, with connexin 43 (Cx43) being the most ubiquitously expressed and best studied. While the molecular events that dictate the Cx43 life cycle have largely been characterized, the unusually short half-life of Cxs of only 1–5 h, resulting in constant endocytosis and biosynthetic replacement of gap junction channels, has remained puzzling. The Cx43 C-terminal (CT) domain serves as the regulatory hub of the protein affecting all aspects of gap junction function. Here, deletion within the Cx43 CT (amino acids 256–289), a region known to encode key residues regulating gap junction turnover, is employed to examine the effects of dysregulated Cx43 gap junction endocytosis using cultured cells (Cx43∆256-289) and a zebrafish model (cx43lh10). We report that this CT deletion causes defective gap junction endocytosis as well as increased gap junction intercellular communication. Increased Cx43 protein content in cx43lh10 zebrafish, specifically in the cardiac tissue, larger gap junction plaques, and longer Cx43 protein half-lives coincide with severely impaired development. Our findings demonstrate for the first time that continuous Cx43 gap junction endocytosis is an essential aspect of gap junction function and, when impaired, gives rise to significant physiological problems as revealed here for cardiovascular development and function.  相似文献   

18.
19.
20.
The role of gap junction membrane channels in development   总被引:11,自引:0,他引:11  
In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号