首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Eukaryotic cells have developed specific mechanisms to overcome environmental stress. Here we show that the Src homology 2/3 (SH2/SH3) domain-containing protein Nck-1 prevents the unfolded protein response normally induced by pharmacological endoplasmic reticulum (ER) stress agents. Overexpression of Nck-1 enhances protein translation, whereas it abrogates eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation and inhibition of translation in response to tunicamycin or thapsigargin treatment. Nck-1 overexpression also attenuates induction of the ER chaperone, the immunoglobulin heavy chain-binding protein (BiP), and impairs cell survival in response to thapsigargin. We provided evidence that in these conditions, the effects of Nck on the unfolded protein response (UPR) involve its second SH3 domain and a calyculin A-sensitive phosphatase activity. In addition, we demonstrated that protein translation is reduced in mouse embryonic fibroblasts lacking both Nck isoforms and is enhanced in similar cells expressing high levels of Nck-1. In these various mouse embryonic fibroblasts, we also provided evidence that Nck modulates the activation of the ER resident eIF2alpha kinase PERK and consequently the phosphorylation of eIF2alpha on Ser-51 in response to stress. Our study establishes that Nck is required for optimal protein translation and demonstrates that, in addition to its adaptor function in mediating signaling from the plasma membrane, Nck also mediates signaling from the ER membrane compartment.  相似文献   

2.
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.  相似文献   

3.
Expression of the PRL gene is regulated by many factors, including cAMP, estradiol (E2), phorbol esters, epidermal growth factor (EGF), and TRH. The promoter region of the rat PRL gene has been shown to contain DNA sequences that are thought to support the direct interaction of estrogen receptors (ERs) with DNA. It is by this direct ER/DNA interaction that estrogen is thought to modulate expression of PRL. We report here that estrogeninduced PRL expression requires an intact mitogen-activated protein kinase (MAPK) signal transduction pathway in cultured rat pituitary cells (PR1 lactotroph and GH3 somatolactotroph cell lines). Interfering with the MAPK signaling cascade by inhibiting the activity of MAPK kinase (MEK) ablates the ability of estrogen to induce PRL mRNA and protein. In these cell lines, estrogen activates extracellular regulated protein kinases ERK-1 and ERK-2 enzyme activities maximally within 10 min of 1 nM E2 treatment. This activity is blocked by pretreatment of the cells with the MEK inhibitors PD98059 and UO126. The mechanism by which ERKs-1 and -2 are activated by estrogen appears to be independent of c-Src since the effects of estrogen on PRL gene expression are not affected by herbimycin A or PP1 administration. c-Raf-1 may be involved in the effects of E2 because estrogen causes the rapid and transient tyrosine phosphorylation of c-Raf-1. The ER antagonist ICI 182,780 blocks both ERK-1 and ERK-2 activation in addition to PRL protein and mRNA, implying a central role for the classical ER in the activation of the MAPK pathway resulting in PRL gene expression.  相似文献   

4.
PERK, the PKR-like endoplasmic reticulum (ER) kinase, is an ER transmembrane serine/threonine protein kinase activated during ER stress. In this study, we provide evidence that the Src-homology domain–containing adaptor Nck1 negatively regulates PERK. We show that Nck directly binds to phosphorylated Y561 in the PERK juxtamembrane domain through its SH2 domain. We demonstrate that mutation of Y561 to a nonphosphorylatable residue (Y561F) promotes PERK activity, suggesting that PERK phosphorylation at Y561 (pY561PERK) negatively regulates PERK. In agreement, we show that pY561PERK delays PERK activation and signaling during ER stress. Compatible with a role for PERK in pancreatic β-cells, we provide strong evidence that Nck1 contributes to PERK regulation of pancreatic β-cell proteostasis. In fact, we demonstrated that down-regulation of Nck1 in mouse insulinoma MIN6 cells results in faster dephosphorylation of pY561PERK, which correlates with enhanced PERK activation, increased insulin biosynthesis, and PERK-dependent increase in proinsulin content. Furthermore, we report that pancreatic islets in whole-body Nck1-knockout mice contain more insulin than control littermates. Together our data strongly suggest that Nck1 negatively regulates PERK by interacting with PERK and protecting PERK from being dephosphorylated at its inhibitory site pY561 and in this way affects pancreatic β-cell proinsulin biogenesis.  相似文献   

5.
The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.  相似文献   

6.
Artemin, one of the glial cell line-derived neurotrophic factor (GDNF) family, enhances the generation and survival of early sympathetic neurons and superior cervical ganglion (SCG) neurons. Src-family kinases (SFK) are involved in the growth and differentiation of cells, which are composed of unique Src homology 2 (SH2), Src homology 3 (SH3) and kinase domains. Various extra-cellular molecules containing growth factors and G-protein coupled receptors stimulate SFK. In this report, artemin is shown to have a significant effect on the neurite growth of dorsal root ganglia (DRG) neurons. Also, artemin triggers Src-family kinase activation and the phosphorylation of extra-cellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK). Artemin also regulated actin polymerization. There are several indications that another SH3-containing protein, Hck, and an SH3-containing adaptor protein, Nck1, play an important role in the organization of the actin cytoskeleton by cellular signalling. These findings suggest that the exploration of binding partners for the SH3 domain could provide an insight into regulation between the microtubule and actin networks. The binding partners for the SH3 domains of Nck, Src and Hck that we identified were Smc chromosome segregation ATPases, FOG Zn-finger protein and the FYVE zinc-binding domain, respectively.  相似文献   

7.
The aim of this study was to determine the pathway(s) by which ethanol activates mitogen-activated protein kinase (MAPK) signaling and to determine the role of Ca2+ in the signaling process. MAPK signaling was determined by assessing MAPK activity, measuring phosphorylated extracellular signaling-regulated kinase (pp 44 ERK-1 and pp 42 ERK-2) expression and ERK activity by measuring ERK-2-dependent phosphorylation of a synthetic peptide as a MAPK substrate in rat vascular smooth muscle cells. Ethanol activated extracellular signal-regulated kinase expression (ERK 1 and 2) could be observed when vascular smooth muscle cells (VSMCs) were stimulated for 5 min or less, but was inhibited when cells are treated for 10 min or more with 1-16 mM of ethanol. Maximum ethanol-induced MAPK activity was observed within 5 min with 4 or 8 mM. Ethanol stimulated MAPK activity was blocked by the protein kinase C (PKC) inhibitor (GF109203X) and epidermal growth factor (EGF) receptor antagonist (PD153035) by 41 +/- 24 and 34 +/- 12.3%, respectively. The calcium channel blocker, diltiazem and the chelating agent, BAPTA, reduced the activation of MAPK activity by ethanol, significantly. The data demonstrate that ethanol-stimulated MAPK expression is mediated partially through both the EGF-receptor and PKC intermediates and that activation through the PKC intermediate is calcium-dependent.  相似文献   

8.
The Raf-1 kinase is the entry point to the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK-1/2) signaling pathway, which controls fundamental cellular functions including proliferation, differentiation, and survival. As such, Raf-1 is regulated by complex mechanisms that are incompletely understood. Recent results have shown that release from repression is an important event that facilitates the interaction of Raf-1 with the Ras activator and its substrate, MAPK/ERK-1/2 kinase. A number of distinct activation steps contribute in a combinatorial fashion to regulate and adjust Raf-1 activity. The efficiency of downstream signal transmission is modulated by protein:protein interactions, and new data consolidate an important role for kinase suppressor of ras (KSR) as a scaffolding protein. KSR is a dynamic scaffold whose function and localization is regulated by phosphorylation.  相似文献   

9.
10.
The mechanisms by which inorganic salts of the trace element vanadium mediate their insulinomimetic effects are not clearly understood and were investigated. We have shown previously that vanadium salts activate mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase activities (PI3-K) via a pathway that does not involve the insulin receptor (IR) tyrosine kinase function [Pandey, S. K., Anand-Srivastava, M. B., and Srivastava, A. K. (1998) Biochemistry 37, 7006-7014]. Herein, we have examined a possible role of PI3-K in the vanadyl sulfate (VS)-mediated increase in the level of ras-MAPK activation as well as the contribution of signaling components upstream to MAPK in this VS response. Treatment of IR-overexpressing cells with VS resulted in an increased level of tyrosine phosphorylation of p44(mapk) (ERK-1) and p42(mapk) (ERK-2) along with stimulation of MAPK, MAPK kinase (MEK), and C-raf-1 activities, and ras activation. Preincubation with wortmannin and LY294002, two structurally and mechanistically different inhibitors of PI3-K, blocked the VS-mediated increase in MAPK activity and phosphorylation of ERK-1 and ERK-2. Furthermore, wortmannin inhibited activation of ras, C-raf-1, and MEK in response to VS. The addition of a farnesyltransferase inhibitor, B581, to cells reduced the level of MAPK activation as well as ERK-1 and ERK-2 phosphorylation stimulated by VS. Finally, VS increased PI3-K activity in ras immunoprecipitates. A VS-mediated increase in p70(s6k) activity was also found to be inhibited by wortmannin. Taken together, these results demonstrate that the insulinomimetic effects of VS may be mediated, in part, by PI3-K-dependent stimulation of the ras-MAPK and p70(s6k) pathways.  相似文献   

11.
The transmembrane protein nephrin is a key component of the kidney slit diaphragm that contributes to the morphology of podocyte foot processes through signaling to the underlying actin cytoskeleton. We have recently reported that tyrosine phosphorylation of the cytoplasmic tail of nephrin facilitates recruitment of Nck SH2/SH3 adaptor proteins and subsequent actin remodeling and that phosphorylation of the Nck binding sites on nephrin is decreased during podocyte injury. We now demonstrate that Nck directly modulates nephrin phosphorylation through formation of a signaling complex with the Src family kinase Fyn. The ability of Nck to enhance nephrin phosphorylation is compromised in the presence of a Src family kinase inhibitor and when the SH3 domains of Nck are mutated. Furthermore, induced loss of Nck expression in podocytes in vivo is associated with a rapid reduction in nephrin tyrosine phosphorylation. Our results suggest that Nck may facilitate dynamic signaling events at the slit diaphragm by promoting Fyn-dependent phosphorylation of nephrin, which may be important in the regulation of foot process morphology and response to podocyte injury.  相似文献   

12.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

13.
Hypoxia activates all components of the unfolded protein response (UPR), a stress response initiated by the accumulation of unfolded proteins within the endoplasmic reticulum (ER). Our group and others have shown previously that the UPR, a hypoxia-inducible factor-independent signaling pathway, mediates cell survival during hypoxia and is required for tumor growth. Identifying new genes and pathways that are important for survival during ER stress may lead to the discovery of new targets in cancer therapy. Using the set of 4,728 homozygous diploid deletion mutants in budding yeast, Saccharomyces cerevisiae, we did a functional screen for genes that conferred resistance to ER stress-inducing agents. Deletion mutants in 56 genes showed increased sensitivity under ER stress conditions. Besides the classic UPR pathway and genes related to calcium homeostasis, we report that two additional pathways, including the SLT2 mitogen-activated protein kinase (MAPK) pathway and the osmosensing MAPK pathway, were also required for survival during ER stress. We further show that the SLT2 MAPK pathway was activated during ER stress, was responsible for increased resistance to ER stress, and functioned independently of the classic IRE1/HAC1 pathway. We propose that the SLT2 MAPK pathway is an important cell survival signaling pathway during ER stress. This study shows the feasibility of using the yeast deletion pool to identify relevant mammalian orthologues of the UPR.  相似文献   

14.
Neutrophils stimulated with the chemoattractant FMLP or the phorbol ester PMA are known to exhibit activation of a 90-kDa renaturable protein kinase. Activation of this kinase was maximal at approximately 1-3 min after cell stimulation and the time course for activation was similar to that of the extracellular-regulated kinases (ERKs) and p38-mitogen activated protein kinase (p38MAPK). Compounds that block activation of ERK-1/2 (PD 98059) or that inhibit the activity of p38MAPK (SB 203580) blocked activation of this 90-kDa kinase. SB 203580 is a highly selective inhibitor of p38MAPK in vitro and is under intense study as a lead compound for developing novel anti-inflammatory agents. However, we demonstrate that SB 203580 at concentrations >/=10 microM can also inhibit activation of ERK-1/2 in neutrophils. An Ab to the protein kinase p90RSK2 (also referred to as MAPKAP-K1b, or p90rsk) immunoprecipitated the active 90-kDa kinase from lysates of stimulated neutrophils. No activity was observed for this enzyme in immunoprecipitates obtained from unstimulated cells, and the amounts of activity were markedly reduced if the cells were treated with PD 98059 or SB 203580 before stimulation. Neutrophils stimulated with FMLP exhibited phosphorylation of the cAMP response element binding protein (CREB), and this reaction was inhibited by SB 203580 and PD 98059. These data establish that the renaturable 90-kDa protein kinase is p90RSK2 and that CREB may be a substrate for this enzyme in these cells. Novel effects of compound SB 203580 on stimulated neutrophils are also described.  相似文献   

15.
Recent evidence indicates that testosterone is neuroprotective, however, the underlying mechanism(s) remains to be elucidated. In this study, we investigated the hypothesis that androgens induce mitogen-activated protein kinase (MAPK) signaling in neurons, which subsequently drives neuroprotection. We observed that testosterone and its non-aromatizable metabolite dihydrotestosterone (DHT) rapidly and transiently activate MAPK in cultured hippocampal neurons, as evidenced by phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2. Importantly, pharmacological suppression of MAPK/ERK signaling blocked androgen-mediated neuroprotection against beta-amyloid toxicity. Androgen activation of MAPK/ERK and neuroprotection also was observed in PC12 cells stably transfected with androgen receptor (AR), but in neither wild-type nor empty vector-transfected PC12 cells. Downstream of ERK phosphorylation, we observed that DHT sequentially increases p90 kDa ribosomal S6 kinase (Rsk) phosphorylation and phosphorylation-dependent inactivation of Bcl-2-associated death protein (Bad). Prevention of androgen-induced phosphorylation of Rsk and Bad blocked androgen neuroprotection. These findings demonstrate AR-dependent androgen activation of MAPK/ERK signaling in neurons, and specifically identify a neuroprotective pathway involving downstream activation of Rsk and inactivation of Bad. Elucidation of androgen-mediated neural signaling cascades will provide important insights into the mechanisms of androgen action in brain, and may present a framework for therapeutic intervention of age-related neurodegenerative disorders.  相似文献   

16.
Related adhesion focal tyrosine kinase (RAFTK) (also known as PYK2) is a cytoplasmic tyrosine kinase related to the focal adhesion kinase (FAK) p125(FAK). RAFTK is rapidly phosphorylated on tyrosine residues in response to various stimuli, such as tumor necrosis factor-alpha, changes in osmolarity, elevation in intracellular calcium concentration, lysophosphatidic acid, and bradykinin. Overexpression of RAFTK induces activation of c-Jun amino-terminal kinase (also known as stress-activated protein kinase), mitogen-activated protein kinase (MAPK), and p38 MAPK. The present studies demonstrate that RAFTK binds constitutively to the protein tyrosine phosphatase SHPTP1. In contrast to PTP1B, overexpression of wild-type SHPTP1 blocks tyrosine phosphorylation of RAFTK. The results further demonstrate that RAFTK is a direct substrate of SHPTP1 in vitro. Moreover, treatment of PC12 cells with bradykinin is associated with inhibition in tyrosine phosphorylation of RAFTK in the presence of SHPTP1. Furthermore, in contrast to the phosphatase-dead SHPTP1 C453S mutant, overexpression of wild-type SHPTP1 blocks interaction of RAFTK with the SH2-domain of c-Src and inhibits RAFTK-mediated MAPK activation. Significantly, cotransfection of RAFTK with SHPTP1 did not inhibit RAFTK-mediated c-Jun amino-terminal kinase activation. Taken together, these findings suggest that SHPTP1 plays a negative role in PYK2/RAFTK signaling by dephosphorylating RAFTK.  相似文献   

17.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

18.
PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.  相似文献   

19.

Background

Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown.

Results

Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly.

Conclusion

Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.
  相似文献   

20.
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号