首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
We have identified and analyzed cDNAs corresponding to a single-copy gene from rice, designated lir1, whose expression exhibits dramatic diurnal fluctuations. The cDNAs encode a putative protein of 128 amino acids with no homology to known proteins. Lir1 mRNA accumulates in the light, reaching maximum and minimum steady-state levels at the end of the light and dark period, respectively. The oscillations of lir1 mRNA abundance persist after the plants have been transferred to continuous light or darkness. Plants germinated in the dark have very low levels of lir1 mRNA, whereas plants germinated in continuous light express lir1 at an intermediate but constant level. These results indicate that lir1 expression is controlled by light and a circadian clock.  相似文献   

2.
The development of techniques allowing the unattended collection of RNA from cell samples at room temperature makes practical accurate and facile monitoring of circadian rhythms in Chlamydomonas reinhardtii. The utility of these methods was demonstrated by collecting RNA samples for three days from cells maintained in continuous darkness. Every hour, cells were automatically collected and lysed with buffer containing SDS and proteinase K. Samples were maintained at room temperature with little or no evidence of degradation of RNA. Strong, non-damping circadian rhythms of cab mRNA abundance were measured. Free-running rhythms of about 24 h were measured from cultures maintained at 16, 20, 25 and 30 °C, thus demonstrating temperature compensation of circadian period. Simultaneous collections from cultures previously entrained to 12 h light/12 h dark cycles of opposite phase displayed circadian rhythms of cab mRNA abundance that were in phase with their previous entraining light cycles. Thus, this result suggests that the measured circadian rhythms of cab mRNA abundance was not an artifact of the collection procedure.  相似文献   

3.
4.
A circadian rhythm in growth was detected by computer-aided image analysis in 3–4-cm-long, juvenile sporophytes of the kelp species Pterygophora California Rupr. and in seven Laminaria spp. In P. californica, the free-running rhythm occurred in continuous white fluorescent light, had a period of 26 h at 10°or 15°C, and persisted for at least 2 weeks in white or blue light. The rhythm became insignificant in continuous green or red light after 3 cycles. Synchronization by white light-dark regimes, e.g. by 16 h light per day, resulted in an entrained period of 24 h and in a shift of the circadian growth minimum into the middle of the light phase. A morning growth peak represented the decreasing portion of the circadian growth curve, and an evening peak the increasing portion. The circadian growth peak was not visible during the dark phase, because growth rate decreased immediately after the onset of darkness. At night, some growth still occurred at 16 or 12 h light per day, whereas growth stopped completely at 8 h light per day, as in continuous darkness. During 11 days of darkness, the thallus area became reduced by 3.5%, but growth rate recovered in subsequent light–dark cycles, and the circadian growth rhythm reappeared in subsequent continuous light.  相似文献   

5.
Stem and leaf tissues of Stellaria longipes Goldie (prairie ecotype) exhibit circadian rhythmicity in the activity and mRNA abundance for 1-aminocyclopropane-1-carboxylic acid oxidase (EC 1.4.3). The steady-state mRNA levels and enzymatic activity levels fluctuated with a period of approximately 24 h and reached their maxima by the middle of the light phase and minima by the middle of the dark phase. The oscillations showed damping under constant light, constant dark and constant temperature conditions, indicating that the rhythm is entrained by an external signal. The results indicate that light/dark cycles have greater entraining effects than temperature cycles. A 15-min red light pulse, but not a blue light pulse, could reset rhythm in continuous darkness, suggesting the possible role of a red-light signal transduction pathway in the circadian regulation of 1-aminocyclopropane-1-carboxylic acid oxidase.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - DD continuous dark - LD light-dark - LL continuous light - ZT Zeitgeber time (start of light period for circadian entrainment) This study was supported by operating grants to C.C.C., and D.M.R. from the Natural Sciences and Engineering Research Council of Canada.The authors gratefully acknowledge the award of a Bettina Bahlsen memorial Graduate Scholarship by University of Calgary to A.K. We are grateful to Dr. M.M. Moloney for allowing the use of his laboratory facilities.  相似文献   

6.
Despite the widespread distribution of proteorhodopsin (PR)-containing bacteria in the oceans, the use of light-derived energy to promote bacterial growth has only been shown in a few bacterial isolates, and there is a paucity of data describing the metabolic effects of light on environmental photoheterotrophic taxa. Here, we assessed the effects of light on the taxonomic composition, cell integrity and growth responses of microbial communities in monthly incubations between spring and autumn under different environmental conditions. The photoheterotrophs expressing PR in situ were dominated by Pelagibacterales and SAR116 in July and November, while members of Euryarchaeota, Gammaproteobacteria and Bacteroidetes dominated the PR expression in spring. Cell-membrane integrity decreased under dark conditions throughout most of the assessment, with maximal effects in summer, under low-nutrient conditions. A positive effect of light on growth was observed in one incubation (out of nine), coinciding with a declining phytoplankton bloom. Light-enhanced growth was found in Gammaproteobacteria (Alteromonadales) and Bacteroidetes (Polaribacter and Tenacibaculum). Unexpectedly, some Pelagibacterales also exhibited higher growth rates under light conditions. We propose that the energy harvested by PRs helps to maintain cell viability in dominant coastal photoheterotrophic oligotrophs while promoting the growth of some widespread taxa benefiting from the decline of phytoplankton blooms.  相似文献   

7.
Background: Persuasive evidence for circadian programs in non-photosynthetic bacteria other than cyanobacteria is still lacking, we aimed to investigate the circadian rhythm of specific growth rate in Escherichia coli ATCC 25922, one of the important prokaryotes. Methods: To grow E. coli under different light and dark conditions. When the growth entered into the stationary phase, we stopped the culture and obtained the viable counts by MTT assay every 3 h. The specific growth rates (SGRs) were calculated and analyzed with cosinor method for potential rhythms. Results: Single cosinor method revealed that the SGR of E. coli displayed rhythmic variations with a period of around 24 h both under light/dark cycles and under constant darkness. The best-fitting periods and best-fitting cosine curves were acquired. Conclusions: The SGR of E. coli (ATCC 25922) in a culture medium with limiting substrates in the stationary and death phases displayed rhythmic variations with a period of around 24 h under light/dark cycles and constant darkness conditions.  相似文献   

8.
9.
The growth, physiology, and ultrastructure of the marine, unicellular, diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, was examined under mixotrophic and chemoheterotrophic conditions. Several organic substrates were tested for the capacity to support heterotrophic growth. Glycerol was the only substrate capable of enhancing mixotrophic growth in the light and supporting chemoheterotrophic growth in the dark. Dextrose enhanced mixotrophic growth but could not support chemoheterotrophic growth. Chemoheterotrophic cultures in continuous darkness grew faster and to higher densities than photoautotrophic cultures, thus demonstrating the great respiratory capacity of this cyanobacterial strain. Only small differences in the pigment content and ultrastructure of the heterotrophic strains were observed in comparison to photoautotrophic control strains. The chemoheterotrophic strain grown in continuous darkness and the mixotrophic strain grown in light/dark cycles exhibited daily metabolic oscillations in N2 fixation and glycogen accumulation similar to those manifested in photoautotrophic cultures grown in light/dark cycles or continuous light. This “temporal separation” helps protect O2-sensitive N2 fixation from photosynthetic O2 evolution. The rationale for cyclic glycogen accumulation in cultures with an ample source of organic carbon substrate is unclear, but the observation of similar daily rhythmicities in cultures grown in light/dark cycles, continuous light, and continuous dark suggests an underlying circadian mechanism.  相似文献   

10.
Roots in the soil are illuminated by far‐red (FR) light passed through plant tissues in the daytime, and are in complete darkness at night. To evaluate whether gene expression of roots is affected by a dark‐FR light cycle, gene expression profiles were analysed for dark‐adapted versus light‐grown plants and for FR light‐illuminated versus dark‐adapted plants using the RIKEN Arabidopsis full‐length cDNA microarray (containing approximately 7000 independent, full‐length cDNA groups). Among candidate dark‐ and FR‐regulated genes, several were further analysed. Eleven dark‐inducible and five dark‐repressed genes were characterized. Almost all the dark‐inducible and –repressed genes were oppositely regulated by FR light illumination. The functions of dark‐ and FR‐responsive genes and the significance of FR light‐regulated gene expression in roots under ground are discussed.  相似文献   

11.
Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light‐ and dark‐grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress‐related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light‐grown cells were more sensitive to heavy metal toxicity than dark‐grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism‐related proteins increased in relative abundance both in light‐ and dark‐grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti‐oxidative processes were decreased both in light‐ and dark‐grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light‐dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.  相似文献   

12.
Light-dependent gene expression was analysed in photomixotrophic cell suspension cultures of rape (Brassica napus L.) growing in media containing either 2.0% or 0.6% sucrose. During growth in darkness phytochrome type I and NADPH-protochlorophyllide oxidoreductase (Pchlide reductase) accumulated in both cell culture lines to a similar extent. Illumination with continuous white, blue or red light, but not with far-red light, resulted in disappearance of both chromoproteins within 24 h in both cell cultures. Further analysis showed that the phytochrome system of rape cell cultures reacts in a similar way to that of re-etiolated dicotyledonous plants, showing rapid Pfr destruction and rapid Pfr dark reversion. In contrast, the light-dependent expression of genes encoding the major chlorophyll a- and b-binding protein (CAB) and the re-accumulation of chlorophyll were found to be strongly dependent on sucrose concentration in culture media. Whereas cells grown in darkness in medium containing 2.0% sucrose showed, after exposure to continuous white light, a very weak re-induction of CAB mRNA, CAB protein and chlorophyll accumulation, the cells in medium containing 0.6% sucrose reacted very strongly. It was also possible to demonstrate that phytochrome (by high irradiance response, HIR, and by low fluence response, LF) and the blue/UV-A receptor are involved in the light-dependent gene expression of CAB. Similar to complete cells, protoplasts derived from the two different cell cultures showed an almost identical sucrose concentration-dependent and light-quality-dependent regulation of CAB mRNA accumulation. As the dark-grown photomixotrophic cells and protoplasts reflect some typical photoregulatory characteristics known from dark-grown plants it is supposed that this system will be an excellent tool for studying biochemical and molecular biological aspects of light-dependent signal transduction in cells of higher plants.  相似文献   

13.
14.
Root explants of chicory (Cichorium intybus L.) were cultured in vitro under continuous light or darkness. On a standard medium (no plant growth regulators added), flowering-stems were initiated under continuous light while under continuous dark, vegetative-stems were formed. Different types of GA (gibberellin) biosynthesis inhibitors were added to the culture medium. Paclobutrazol and compounds belonging to the group of cyclohexanetriones clearly reduced flowering-stem growth under light conditions and vegetative-stem growth under dark conditions. Under light conditions, flower bud initiation was not affected. These and other results suggest that GA1 may be synthesized during the in vitro culture period and that it controls flowering-stem growth but not floral initiation.Abbreviations CCC chlormequat chloride - GA gibberellin - LAB 198 999 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethyl ester - BAS 111..W 1-phenoxy-3-(1H-1,2,4-triazol-1-yl)-4-hydroxy-5,5-dimethylhexane  相似文献   

15.
The influence of light upon behavior of Biomphalaria glabrata was investigated in snails submitted for 48 h to one of the following regimes: normal light cycle, continuous darkness, continuous light. Time-lapse cinematography was used to provide data about snail locomotor activity in response to (a) continuous light or darkness; (b) light or dark phases; (c) light transitions. Snails were significantly less active under continuous light than under continuous or intermittent darkness. Under the normal light cycle, the activity rate was significantly higher in the dark than in the light. Changes from light to dark corresponded to increases in the activity rate which persisted long afterwards. No significant variation in activity occurred upon changes from dark to light.  相似文献   

16.
17.
The green colonial alga Botryococcus braunii is characterized by the ability to produce and accumulate large amounts of hydrocarbons. We isolated and established an axenic clonal strain of B. braunii B70 and investigated the effects of organic carbon sources, including glucose, mannose, fructose, galactose, or acetate, on growth under light and dark conditions. This algal strain had the capacity to grow photo-, mixo-, or heterotrophically. Growth was promoted substantially following exposure of the algae to glucose or mannose under light exposure. Cells could grow under continuous darkness with glucose or mannose. In the presence of glucose under light or dark conditions, cell and colony size, and the intracellular granules containing oil, were markedly larger than those cultured without glucose.  相似文献   

18.
Light influences numerous developmental and biochemical processes in fungi. The objectives of this research were to characterize the influence of light on growth and conidiation and associated gene expression in the plant pathogenic ascomycete, Exserohilum turcicum. We found that vegetative growth was more extensive in light/dark cycles than in constant light or darkness as measured by analysis of ergosterol content and genomic DNA. Cultures grown under continuous white light or blue light (approximately 465-480 nm) were developmentally arrested after the formation of conidiophores, whereas those grown in continuous darkness or a light/dark cycle produced mature conidia. Incubation of conidiophore-producing cultures in darkness for a minimum of 2 h was necessary and sufficient to initiate synchronous conidiation. To identify genes that are expressed during dark-induced conidiation, we constructed subtractive cDNA libraries from cultures grown under conidiation-permissive and -repressive conditions. From 816 sequenced EST clones in the conidiation-permissive and 310 in the repressive libraries, 12 putative regulatory genes were chosen for expression analysis by quantitative real-time PCR. The majority of those genes reached maximum expression by 2 h after initiation of the dark period and then declined to initial levels by 4-24 h in darkness. Expression of two dark-induced genes remained elevated after 24 h in darkness but was reset to initial levels if cultures were returned to light. This study revealed several genes whose expression increased rapidly after dark induction of conidiation, suggesting that they encode regulators of asexual development in E. turcicum.  相似文献   

19.
The impact of illumination on specific growth rate, biomass formation, and synthesis of photopigment was studied in Erythromicrobium hydrolyticum, an obligately aerobic heterotrophic bacterium having the ability to synthesize bacteriochlorophyll a. In dark-grown continuous cultures the concentration of protein increased with increasing dilution rate, the concentration of bacteriochlorophyll a showed the opposite effect. At a dilution rate of 0.08 h-1 (68% of max in the dark) and SR-acetate of 11.8 mM, the concentration of BChla of illuminated cultures in steady-state was 11–22 nM, compared to 230–241 nM in cultures incubated in darkness. No significant differences were observed in the concentration of protein. A shift from darkness to light conditions resulted in increased specific growth rates resulting in increased biomass formation, thus showing that light enhances growth by serving as an additional energy source. This phenomenon, however, was temporary because bacteriochlorophyll synthesis is inhibited by light. In contrast to incubation in continuous light or dark, incubation under light/dark regimen resulted in permanently enhanced biomass formation. In the dark periods, bacteriochlorophyll was synthesized at elevated rates (compared to constant darkness), thus compensating the inhibitory effect of light in the preceding period. It thus appears that the organism is well-adpated to life in environments with alternating light/dark conditions. The ecological relevance of the observations is discussed.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate - spceific growth rate - Ks saturation constant - SR concentration of limiting in inflowing medium of chemostat  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号