首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The pSym megaplasmid of Rhizobium meliloti 2011 mobilized by plasmid RP4, or plasmid pGMI42, an RP4-prime derivative which carries a 290-kilobase pSym fragment including nitrogenase and nod genes, was introduced into Agrobacterium tumefaciens. The resulting transconjugants induced root deformations specifically on the homologous hosts Medicago sativa and Melilotus alba and not on the heterologous hosts Trifolium pratense and Trifolium repens. The root deformations were shown to be genuine nodules by physiological and cytological studies. Thus, host specificity nodulation genes are located on the pSym megaplasmid. Host nodulation specificity did not seem to require recognition at the root hair level since no infection threads could be detected in the root hairs. Cytological observations indicated that bacteria penetrated only the superficial layers of the host root tissue by an atypical infection process. The submeristematic zone and the central tissue of the nodules were bacteria free. Thus, nodule organogenesis was probably triggered from a distance by the bacteria. Agrobacterium transconjugants carrying pSym induced the formation of more numerous and larger nodules than those carrying the RP4-prime plasmid pGMI42, suggesting that some genes influencing nodule organogenesis are located in a pSym region(s) outside that which has been cloned into pGMI42.  相似文献   

2.
Summary We have shown by physical and genetic means that there are two megaplasmids in all strains of Rhizobium meliloti that we have studied. Megaplasmids from several strains of R. meliloti were mobilized to Agrobacterium tumefaciens and to other Rhizobium strains using the Tn5-Mob system. We were also able to resolve these two megaplasmids in agarose gels for most strains, and to show that only one of them hybridized to nif and nod genes. Transfer of this plasmid, the pSym, to Agrobacterium, R. leguminosarum, and R. trifolii strains conferred on these recipients the ability to nodulate alfalfa ineffectively. The second megaplasmid did not appear to have a direct role in nodule initiation. However, we were able to complement extracellular polysaccharide (EPS-) mutants of R. meliloti by transferring this second megaplasmid into them. Furthermore, Tn5-induced EPS- mutants of R. meliloti 2011, which produced ineffective (Fix-) nodules of abnormal morphology, were shown by hybridization and complementation to carry mutations in this second megaplasmid. This demonstrates that both megaplasmids of R. meliloti are necessary for the effective nodulation of alfalfa.  相似文献   

3.
Summary We have established the HindIII physical map of a cloned 290 kilobase fragment of the Rhizobium meliloti 2011 pSym megaplasmid. The cloned fragment, which contains nodulation genes as well as the nitrogenase structural genes (nifHDK), has been shown to be colinear with the corresponding genomic region. Using transposon mutagenesis we have demonstrated that a region which is located more than 200 kb from the nifHDK operon on pSym is essential for symbiotic nitrogen fixation.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

4.
In Rhizobium meliloti 2011 nodulation genes (nod) required to nodulate specifically alfalfa are located on a pSym megaplasmid. Nod- derivatives carrying large pSym deletions were isolated. By complementation of these strains with in vivo- and in vitro-constructed episomes containing pSym of sequences and introduction of these episomes into Agrobacterium tumefaciens, we show (i) that from a region of pSym of about 360 kilobases, genes required for specific alfalfa nodulation are clustered in a DNA fragment of less than 30 kilobases and (ii) that a nod region located between nifHDK and the common nod genes is absolutely required for alfalfa nodulation and controls the specificity of root hair curling and nodule organogenesis initiation.  相似文献   

5.
Summary A derivative of the IncP1 plasmid RP4, carrying the thermoinducible prophage Mucts62, was obtained in Escherichia coli K 12 J53 (RP4). It was impossible to maintain the hybrid plasmid RP4: Mucts62 in Rhizobium meliloti GR4. Thus, it was used as a vehicle for introducing the ampicillinresistant transposon Tn1 introducing the ampicillinresistant transposon Tn1 into the R. meliloti genome.Transposition of Tn1 did not generate auxotrophic strains, suggesting that the insertion of Tn1 into the R. meliloti genome was relatively specific. Two chromosomal hot spots for Tn1 insertion were identified by cotransductional analysis, after general transduction by phage DF2. Plasmid-curing experiments, carried out by heat treatment, revealed that symbiotic plasmid(s) also contain at least one site for Tn1 insertion.  相似文献   

6.
Summary It has been well established that Tn3 and its relatives transpose from one replicon to another by two successive reactions: formation of the cointegrate molecule and resolution from it. Whether or not the 9300 base pair tetracycline resistance transposon Tn10 transposes in the same manner as Tn3 was investigated by two methods.In the first method, 55, a lambda phage carrying Tn10 was lysogenized in an Escherichia coli strain carrying a Tn10 insertion; the phage has a deletion in attP, hence it was lysogenized in a Tn10 sequence in the E. coli chromosome by reciprocal recombination. The chromosomal structure in these lysogens is equivalent to the Tn10-mediated cointegrate molecule of lambda and the E. coli chromosomal DNA. The stability of the cointegrate molecule was examined by measuring the rate of excision of lambda from the host chromosome, and was found to be stable, especially in a Rec- strain. Because of this stability, the cointegrate molecule should be accumulated if Tn10 transposes via the cointegrate molecule. Then, we examined the configuration of products made by transposition of Tn10 from 55 to the E. coli chromosome. The cointegrate molecule was found in products of Tn10 transposition in a Rec+ strain at a frequency of 5% per Tn10 transposition, but this molecule could not be found in a Rec- strain. Since transposition of Tn10 was recA-independent, absence of the cointegrate molecule formed in a RecA- strain strongly suggested that the cointegrate molecule is not an obligatory intermediate of transposition of Tn10.In the second method, mobilization of pACYC177 by R388 and by R388:: Tn10 was examined. The pACYC177 plasmid was mobilized by R388::Tn10 at a frequency of 10-4 per donor but not by R388. It occurred, in most cases, by inverse transposition of R388::Tn10 to pACYC177 forming plasmids such as pACYC177::IS10-R388-IS10. Mobilization of pACYC177 by a Tn10-mediated cointegrate in the form of pACYC177::Tn10-R388-Tn10 was not observed in crosses using a Rec- donor. These observations also suggested that transposition of Tn10 in Rec- cells does not occur via the cointegrate molecule.  相似文献   

7.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   

8.
Summary Transposon Tn7 was shown to insert specifically into the megaplasmid of different Rhizobium meliloti strains. Tn7 transposition could not be detected in other Rhizobium strains such as R. trifolii, R. leguminosarum, R. phaseoli and R. japonicum. In R. meliloti strains, two unique sites in the megaplasmid were observed into which Tn7 can transpose at different frequencies. Only one copy of Tn7 could be detected in the megaplasmid and the insertion sites for Tn7 are outside the nif and nod region. Tn7 transposition in R. meliloti showed a marked preference for sites on plasmid RP4 compared to the megaplasmid sites. Attempts to cure Tn7 from the megaplasmid were unsuccessful. This site specific transposition of Tn7 in R. meliloti provides an additional genetic tool to further manipulate this important plasmid in symbiotic nitrogen fixation.  相似文献   

9.
Summary Two strains of the soybean endosymbiont Bradyrhizobium japonicum, USDA 110 and 61 A101 C, were mutagenized with transposon Tn5. After plant infection tests of a total of 6,926 kanamycin and streptomycin resistant transconjugants, 25 mutants were identified that are defective in nodule formation (Nod-) or nitrogen fixation (Fix-). Seven Nod- mutants were isolated from strain USDA 110 and from strain 61 A101 C, 4 Nod- mutants and 14 Fix- mutants were identified. Subsequent auxotrophic tests on these symbiotically defective mutants identified 4 His- Nod- mutants of USDA 110. Genomic Southern analysis of the 25 mutants revealed that each of them carried a single copy of Tn5 integrated in the genome. Three 61 A101 C Fix- mutants were found to have vector DNA co-integrated along with Tn5 in the genome. Two independent DNA regions flanking Tn5 were cloned from the three nonauxotrophic Nod- mutants and one His-Nod- mutant of USDA 110. Homogenotization of the cloned fragments into wild-type strain USDA 110 and subsequent nodulation assay of the resulting homogenotes confirmed that the Tn5 insertion was responsible for the Nod- phenotype. Partial EcoR1 restriction enzyme maps around the Tn5 insertion sites were generated. Hybridization of these cloned regions to the previously cloned nod regions of R. meliloti and nif and nod regions of B. japonicum USDA 110 showed no homology, suggesting that these regions represent new symbiotic clusters of B. japonicum.  相似文献   

10.
Summary A 70 kbp segment of the megaplasmid from a broad host range Rhizobium strain (MPIK3030) was mapped with the aid of cosmid clones made in the vector pJB8. A 7.9 kbp EcoRI fragment from this region, 55 kbp away from the nif gene cluster, was shown to hybridize to the common nod genes from R. meliloti. Using several R. meliloti nod probes it was possible to delimit an 830 bp region as being the center of greatest homology. Sequence data from two sections of this region gave a nucleotide homology of 73.7% to the nodC gene of R. meliloti. Using Tn5 mutagenesis a clone was isolated carrying Tn5 in the highly homologous region. When tested on Macroptilium atropurpureum, this MPIK3030 derivative was shown to have a Nod phenotype. When the wild-type allele was reintroduced into the Tn5 mutant, nodulation was restored. Interspecies complementation also showed that both R. meliloti and Rhizobium sp. MPIK3030 nod regions were able to restore nodulation to Tn5-induced nodC mutants from either strain.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

11.
Summary Large plasmids of molecular weight varying from 90 to around 200×106 have earlier been detected in most Rhizobium meliloti strains using an alkaline denaturation-phenol extraction procedure. With a less destructive method (Eckhardt 1978) it was possible additionally to detect one plasmid of molecular weight clearly greater than 300×106 (=megaplasmid) in all of twenty-seven R. meliloti strains of various geographical origins and nodulation groupings investigated. Four strains (RCR 2011, A145, S26 and CC2013) were found to carry one megaplasmid and no smaller plasmids. Hybridization experiments with Klebsiella pneumoniae and R. meliloti cloned nitrogenase structural genes D and H showed that these genes are located on the megaplasmid and not on the smaller plasmids.All of the ten independent spontaneous non-nodulating derivatives of three strains of R. meliloti were shown to have suffered a deletion in the nif DH region of the megaplasmid. These results indicate that a gene controlling an early step in nodule formation is located in the nif DH region of the megaplasmid. This indicates that the same replicon carries genes controlling early and late functions in symbiosis.  相似文献   

12.
Summary A general method was developed for the isolation of Salmonella thyphimurium LT2 Mu d1–8 (Apr lac) operon fusions in a gene displacing a Tn10 insertion. Random Mu d1–8 fusion pools were prepared to grow phage P22 lysates which transduced chlC::Tn10 to AprTets on fusaric acidampicillin plates. Among these AprTets potential chlC::Mu d1–8 fusions, a simple spot test identified the fusions that were closely linked to the Tn10 insertion in chlC. Out of 68 AprTets isolates 7 chlC::Mu d1–8 fusions with a nitrate-induced Lac+ phenotype were obtained. When oxrA::Tn10 was transduced into these chlC::Mu d1–8 fusions, they became Lac- even in the presence of nitrate, confirming that they were chlC::Mu d1–8 fusions.  相似文献   

13.
Summary The indigenous megaplasmid pRme41b of Rhizobium meliloti 41 was made susceptible to mobilization with the P-1 type plasmid pJB3JI by inserting the mobilization (mob) region of RP4 into it. First the mob region together with a kanamycin resistance marker was inserted in vitro into a fragment of pRme41b cloned into pBR322. The recombinant plasmids so formed (pAK11 and pAK12) were then mobilized into R. meliloti. Since these recombinant plasmids were unable to replicate in R. meliloti, selection for kanamycin resistant derivatives allowed the isolation of pRme41b::pAK11 or pRme41b::pAK12 cointegrates. It was shown that in the majority of these recombinants, pAK11 or pAK12 was integrated into the homologous fragment of pRme41b. The pRme41b cointegrates were transferred into nod-nif deletion mutants of R. meliloti 41 where it was shown that both Nod+ and Fix+ phenotypes could be restored. The pRme41b cointegrates were also transferred into two other Rhizobium strains and into Agrobacterium tumefaciens. The Rhizobium strains and A. tumefaciens carrying pRme41b formed nodules of variable size on Medicago sativa roots, indicating that at least the early steps of nodulation of M. sativa are coded by pRme41b and are expressed in these bacteria.  相似文献   

14.
Summary A certain class of cointegrate plasmids was found to occur between a pSC101 derivative and a second plasmid pBV320 in E. coli F- cells. Cleavage analysis and DNA sequencing showed that the cointegrate plasmid contained direct repeats of an insertion sequence IS101 at the recombination junctions, indicating that formation of cointegrates was mediated by IS101, which is a natural constitutent of pSC101. These cointegrates were formed only in cells which contained the transposon gamma-delta, suggesting that the gamma-delta sequence, which provides transposase, is responsible for cointegration. Whenever the cointegrate plasmids were present in cells containing gamma-delta or its related transposon Tn3, the cointegrates were dissolved to give pBV320::IS101 due to recombination at duplicated IS101 sequences in the cointegrates, suggesting that both gamma-delta and Tn3, which provide a resolvase, are responsible for the resolution of the cointegrates. Comparison between the nucleotide sequence of IS101 and those of gamma-delta and Tn3 shows a high degree of homology in the regions that have been shown to be the binding sites of resolvases, as well as in the terminal inverted repeats. However, there is no homology between IS101 and the other element, gamma-delta or Tn3, in the internal resolution site, at which the resolution event may occur.Abbreviations Tc tetracycline - Cm chloramphenicol - Ap ampicillin - bp base pairs - kb kilobase pairs  相似文献   

15.
Summary R-prime plasmids were formed between the plasmid of Rhizobium fredii strain USDA191 containing nodulation and nitrogen-fixation genes, pRjaUSDA191c, and pRL180, and RP1 derivative. R. fredii USDA191 contains four HindIII fragments that hybridize with an 8.7 kb EcoRI fragment that contains nodulation genes from R. meliloti. These four fragments are on pRjaUSDA191c and are 15.5 kb, 12.5 kb, 6.8 kb, and 5.2 kb in size. A series of R-primes generated in E. coli of pRjaUSDA191c were transferred into a Nod- Nif- derivative of strain USDA191 to determine which nodulation region is necessary for nodule formation. Transconjugants containing the 12.5 kb and the 6.8 kb HindIII fragments on segments of pRjaUSDA191c produced nodules on soybean plants. However, transconjugants containing the 12.5 kb HindIII fragment alone were unable to form nodules, suggesting that the 6.8 kb HindIII fragment or the 6.8 kb and the 12.5 kb HindIII fragments together were needed for nodule formation. The 6.8 kb HindIII fragment was subcloned into the vector pVK102 and transferred into transconjugants containing no sequences homologous to R. meliloti nodulation DNA or to transconjugants containing only the 12.5 kb HindIII fragment. Nodules were formed on soybeans only when both the 12.5 kb and the 6.8 kb HindIII fragments were present in R. frediistrain USDA191.  相似文献   

16.
The symbiotic plasmid (pSym1-32) of the highly effective Rhizobium leguminosarumbv. viceae1-32 strain was identified after the conjugal transfer of replicons carrying Tn5-mobinto the plasmidless Agrobacterium tumefaciensGm1-9023 strain. Plasmid pSym1-32 was transferred intoR. leguminosarumbv. viceaestrains Y14 (showing low effectiveness of symbiosis with Vicia villosa) and Y57 (unable to fix nitrogen). Transconjugants formed Fix+nodules on roots of V. villosaand had a highly enhanced nitrogen fixing ability, increased plant weight, and increased nitrogen accumulation compared to the recipient strains. Variation of transconjugants in symbiotic properties (accompanied by alterations in plasmid composition in some of the conjugants) was detected. Moreover, the donor strain R. leguminosarumbv. viceae1-32 was shown to be more efficient in the competitiveness and acid tolerance than the recipient Y14 strain. Both these properties were transmitted upon transfer of pSym1-32 into the recipient. Thus, plasmid pSym1-32 was shown to carry genes involved in the control of the nitrogen fixing ability, symbiotic effectiveness, competitiveness, and acid tolerance in R. leguminosarumbv. viceae.  相似文献   

17.
Summary Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA + host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA - strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA - strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA - strain, has allowed the localization of the Tn3 sequences necessary for the recombination event.  相似文献   

18.
Summary Symbiotic mutants of Rhizobium meliloti were isolated following Tn5 mutagenesis. Besides four nodulation mutants (Nod-) unable to induce nodule formation on alfalfa, five infection mutants (Inf-), which induce the formation of root nodules without detectable infection threads or bacteroids, were obtained. The Inf- mutants were subdivided into two classes. One class contains mutants which fail to synthesize acidic exopolysaccharide (EPS-). The other class is comprised of mutants which produce excess amounts of acidic exopolysaccharide (EPS*). 13C nuclear magnetic resonance spectroscopy of the exopolysaccharide isolated from one of the latter type of Inf- mutant, 101.45, revealed that the side chain of the repeating octosaccharide unit lacks the terminal pyruvate residue. Complementing cosmids were isolated for all Inf- mutants. In the case of the Inf- EPS- mutants the complementing cosmids contain DNA segments which overlap and are part of megaplasmid 2. For two mutants the mutations were found to map on a 7.8 kb EcoRI fragment. In the case of the Inf- EPS* mutants the complementing cosmids carry chromosomal DNA. The mutations of two Inf- EPS* mutants were localized on a 6.4 kb EcoRI fragment. Coinoculation of alfalfa plants with Nod- and Inf- EPS- mutants resulted in effective symbiosis. The nodules appeared wild type and fixed nitrogen. In constrast, coinoculations with Nod- mutants and the Inf- EPS* mutant 101.45 did not result in the formation of effective nodules.  相似文献   

19.
A 290-kilobase (kb) region of the Rhizobium meliloti 2011 pSym megaplasmid, which contains nodulation genes (nod) as well as genes involved in nitrogen fixation (nif and fix), was shown to carry at least six sequences repeated elsewhere in the genome. One of these reiterated sequences, about 5 kb in size, had previously been identified as part of a cluster of fix genes located 220 kb downstream of the nifHDK promoter. Deletion of the reiterated part of this fix cluster does not alter the symbiotic phenotype. Deletion of the second copy of this reiterated sequence, which maps on pSym 40 kb upstream of the nifHDK promoter, also has no effect. Deletion of both of these copies however leads to a Fix- phenotype, indicating that both sequences carry functionally reiterated fix gene(s). The fix copy 40 kb upstream of nifHDK is part of a symbiotic cluster which also carries a nod locus, the deletion of which produces a marked delay in nodulation.  相似文献   

20.
Summary Cosmids containing a nodulation gene from Rhizobium loti NZP2037 were isolated using a 12.8 kb nod:: Tn5 EcoRI fragment from the Nod- mutant strain PN233, as a hybridisation probe. A physical map of the nod region was established using the enzymes EcoRI and HindIII and the site of insertion of Tn5 in PN233 determined. Site-specific exchange of the cloned nod:: Tn5 fragment demonstrated that Tn5, and not an indigenous insertion sequence, was responsible for the nod mutation in PN233. The nod cosmids isolated complemented the Nod- phenotype of strain PN233 but restoration of the Fix phenotype was variable suggesting a need for marker rescue to occur before nitrogen fixation occurred.Corresponding nod cosmids were isolated from a R. loti strain, NZP2213, that forms ineffective tumour-like structures on Lotus pedunculatus and from the slow-growing strain (Bradyrhizobium sp), CC814s, by in planta complementation of PN233. Hybridisation experiments suggested that the nod gene region of R. loti NZP2037 was more homologous to Bradyrhizobium strain CC814s than with a nod gene region of R. trifolii strain PN100. However, transfer of the R. trifolii nod cosmid into the R. loti Nod mutant PN233, restored the ability of this strain to initiate nodules on Lotus pedunculatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号