首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Baryla A  Carrier P  Franck F  Coulomb C  Sahut C  Havaux M 《Planta》2001,212(5-6):696-709
Brassica napus L. (oilseed rape) was grown from seeds on a reconstituted soil contaminated with cadmium (100 mg Cd kg−1 dry soil), resulting in a marked chlorosis of the leaves which was investigated using a combination of biochemical, biophysical and physiological methods. Spectroscopic and chromatographic analyses of the photosynthetic pigments indicated that chlorosis was not due to a direct interaction of Cd with the chlorophyll biosynthesis pathway. In addition, mineral deficiency and oxidative stress were apparently not involved in the pigment loss. Leaf chlorosis was attributable to a marked decrease in the chloroplast density caused by a reduction in the number of chloroplasts per cell and a change in cell size, suggesting that Cd interfered with chloroplast replication and cell division. Relatively little Cd was found in the chloroplasts and the properties of the photosynthetic apparatus (electron transport, protein composition, chlorophyll antenna size, chloroplast ultrastructure) were not affected appreciably in plants grown on Cd-polluted soil. Depth profiling of photosynthetic pigments by phase-resolved photoacoustic spectroscopy revealed that the Cd-induced decrease in pigment content was very pronounced at the leaf surface (stomatal guard cells) compared to the leaf interior (mesophyll). This observation was consistent with light transmission and fluorescence microscopy analyses, which revealed that stomata density in the epidermis was noticeably reduced in Cd-exposed leaves. Concomitantly, the stomatal conductance estimated from gas-exchange measurements was strongly reduced with Cd. When plants were grown in a high-CO2 atmosphere (4,000 μl CO2 l−1), the inhibitory effect of Cd on growth was not cancelled, suggesting that the reduced availability of CO2 at the chloroplast level associated with the low stomatal conductance was not the main component of Cd toxicity in oilseed rape. Received: 14 July 2000 / Accepted: 27 August 2000  相似文献   

2.
Photosynthetic properties of carnivorous plants have not been well characterized and the extent to which photosynthesis contributes to carbon gain in most carnivorous plants is also largely unknown. We investigated the photosynthetic light response in three carnivorous plant species, Drosera rotundifolia L. (sundew; circumpolar and native to northern British Columbia, Canada), Sarracenia leucophylla Rafin. (‘pitcher-plant’; S.E. United States), and D. capensis L. (sundew; Cape Peninsula, South Africa), using portable gas-exchange systems to explore the capacity for photosynthetic carbon gain in carnivorous plant species. Maximal photosynthetic rates (1.32–2.22 μmol m−2 s−1 on a leaf area basis) and saturating light intensities (100 to 200 μmol PAR m−2 s−1) were both low in all species and comparable to shade plants. Field or greenhouse-grown D. rotundifolia had the highest rates of photosynthesis among the three species examined. Dark respiration, ranging from −1.44 (S. leucophylla) to −3.32 (D. rotundifolia) μmol m−2 s−1 was high in comparison to photosynthesis in the species examined. Across greenhouse-grown plants, photosynthetic light compensation points scaled with light-saturated photosynthetic rates. An analysis of gas-exchange and growth data for greenhouse-grown D. capensis plants suggests that photosynthesis can account for all plant carbon gain in this species.  相似文献   

3.
In order to determine the seasonal growth and biomass ofTrapa japonica Flerov, field observations were carried out at Ojaga-ike Pond, Chiba, Japan, during 1979 and 1980. In spring, the plant showed exponential growth (c. 0.080 g g−1 day−1) and shoot elongation was as rapid as 10 cm day−1. The plant attained its maximum biomass (380.5±35.1 g m−2) in late August, and about 50% of this was concentrated in the topmost 30-cm stratum (645.7±33.1 g m−3); maximum total stem length exceeded 6m. The plant produced large (500–800 mg per fruit), but small numbers of nut-like fruit (maximum, 5 fruits per rosette). Defoliation occurred almost linearly with time at a rate of 30.6 leaves m−2 day−1; annual net leaf production was estimated to be about twice as large as the seasonal maximum leaf biomass. While the number of leaves per rosette showed moderate seasonal change, rosette density, rosette area and leaf dry weight changed considerably during the year. From the negative log-log correlation between mean total leaf dry weight per rosette and rosette density, density-dependent rosette growth was assumed. The cause of the wide spread of this species in aquatic habitats is briefly discussed in terms of its seed size and morphology.  相似文献   

4.
Solymosi K  Morandi D  Bóka K  Böddi B  Schoefs B 《Planta》2012,235(5):1035-1049
To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5–1 μg g−1 fresh mass), chlorophyllides (0.2–27 μg g−1 fresh mass) and chlorophylls (0.9–643 μg g−1 fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast–chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.  相似文献   

5.
Salix gracilistyla is one of the dominant plants in the riparian vegetation of the upper-middle reaches of rivers in western Japan. This species colonizes mainly sandy habitats, where soil nutrient levels are low, but shows high potential for production. We hypothesized that S.␣gracilistyla uses nutrients conservatively within stands, showing a high resorption efficiency during leaf senescence. To test this hypothesis, we examined seasonal changes in nitrogen (N) and phosphorus (P) concentrations in aboveground organs of S. gracilistyla stands on a fluvial bar in the Ohtagawa River, western Japan. The concentrations in leaves decreased from April to May as leaves expanded. Thereafter, the concentrations showed little fluctuation until September. They declined considerably in autumn, possibly owing to nutrient resorption. We converted the nutrient concentrations in each organ to nutrient amounts per stand area on the basis of the biomass of each organ. The resorption efficiency of N and P in leaves during senescence were estimated to be 44 and 46%, respectively. Annual net increments of N and P in aboveground organs, calculated by adding the amounts in inflorescences and leaf litter to the annual increments in perennial organs, were estimated to be 9.9 g and 0.83 g m−2 year−1, respectively. The amounts released in leaf litter were 6.7 g N and 0.44 g P m−2. These values are comparable to or larger than those of other deciduous trees. We conclude that S. gracilistyla stands acquire large amounts of nutrients and release a large proportion in leaf litter.  相似文献   

6.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

7.
The use of Jatropha curcas oil as a source of biofuel has been well-explored. However, the physiological and growth studies of J. curcas have received considerably lesser attention. In this study, leaf gas exchange measurements and leaf nitrogen content were determined for four varieties of J. curcas, grown in the field or in pots. Based on stable carbon isotope analysis (δ13C) and gas-exchange studies, J. curcas is a C3 sun plant and the range of leaf photosynthetic rates (or CO2 assimilation rates, P Nmax) were typically between 7 and 25 μmol(CO2) m−2 s−1 and light saturation generally occurred beyond 800 μmol(quanta) m−2 s−1. Higher rates of leaf photosynthesis were generally obtained with the mature leaves. In addition, increased foliar P Nmax were recorded in potted J. curcas variety Indiana with increasing nitrogen (N) nutrition levels. These plants also showed greater growth, increased leaf N content, higher maximum CO2 assimilation capacity (P NhighCO2) and chlorophyll (Chl) content, indicating the potential of optimizing the growth of Jatropha by varying fertilizer nutrient levels. A rapid assessment for leaf N using a nondestructive and portable Chl meter had been established for J. curcas. This approach will allow repeated sampling of the same plant over time and thus enable the monitoring of the appropriate levels of soil fertility to achieve good Jatropha plantation productivity. High N nutrition improved the overall plant oil yield by increasing the total number of fruits/seeds produced per plant, while not affecting the intrinsic seed oil content.  相似文献   

8.
The in vitro rooting of myrtle (Myrtus communis L.) plantlets was performed in containers with gas permeable (V) and non-permeable (C) closures characterized by a different number of gas exchanges (1.4 and 0.3 h− 1, respectively). The rooting was induced on Perlite, soaked with half strength Murashige and Skoog (MS) medium with 0.5 mg dm−3 IBA, either with and without 15 g dm−3 of sucrose. During the rooting phase, it was demonstrated that C cultures without sucrose (C−) negatively affect the growth of myrtle plantlets. The net photosynthetic rate and the starch content showed the lowest values in C cultures with and without sucrose (C+ and C−) while chlorophyll a content did not vary among treatments, therefore it could not be considered an indicative parameter to evaluate the autotrophic metabolism in myrtle plantlets. Electron microscopy and image analysis were employed to evaluate the leaf ultrastructure at three sample dates. Plantlet rooted in vented vessels with and without sucrose (V+ and V−) showed chloroplasts with numerous starch inclusions, while several osmiophilic plastoglobules (frequently related with leaf senescence) were found in chloroplast of leaf cells of C− myrtle plantlets.  相似文献   

9.
Light saturated net photosynthesis was measured in bracts and leaves ofCarpinus laxiflora, the major species in secondary forests in cool and intermediate temperate zones in Japan. The maximum net photosynthesis of leaves and bracts was essentially constant from May to early August and decreased gradually thereafter. For bracts, it was 3.2 μmol m−2s−1, approximately half that for the leaves. The photosynthesis of bracts would thus appear to contribute significantly to seed maturity. The estimated production of bract based on the photosynthesis would make seeds (3 mg dry weight) mature for 37 days, assuming all photosynthate of the bracts to have been distributed in the seeds only. This was quite consistent with the growth curve for the seeds. A mast year phenomenon is discussed in relation to bract photosynthesis and leaf number.  相似文献   

10.
Thick sun leaves have a larger construction cost per unit leaf area than thin shade leaves. To re-evaluate the adaptive roles of sun and shade leaves, we compared the photosynthetic benefits relative to the construction cost of the leaves. We drew photosynthetically active radiation (PAR)-response curves using the leaf-mass-based photosynthetic rate to reflect the cost. The dark respiration rates of the sun and shade leaves of mulberry (Morus bombycis Koidzumi) seedlings did not differ significantly. At irradiances below 250 μmol m−2 s−1, the shade leaves tended to have a significantly larger net photosynthetic rate (P N) than the sun leaves. At irradiances above 250 μmol m−2 s−1, the P N did not differ significantly. The curves indicate that plants with thin shade leaves have a larger daily CO2 assimilation rate per construction cost than those with thick sun leaves, even in an open habitat. These results are consistently explained by a simple model of PAR extinction in a leaf. We must target factors other than the effective assimilation when we consider the adaptive roles of thick sun leaves.  相似文献   

11.
The changes in the fresh biomass accumulation, photosynthetic and anthocyanin pigments, photosystem 2 (PS 2) activity, ultrastructure of chloroplast, total lipids and fatty acid composition of thylakoid membrane were followed in the aquatic fern Azolla caroliniana grown on medium either deficient or supplied with various phosphorus concentrations. The content of photosynthetic pigments and the anthocyanin/chlorophyll ratio increased significantly with increasing PO4 3− concentration. Phosphate deficiency inhibited growth and PS 2 activity and decreased content of total lipids and phospholipids in isolated thylakoids. This was accompanied with a significant increase in the percentage of galalactolipids.  相似文献   

12.
Sesuvium portulacastrum is a halophytic species well adapted to salinity and drought. In order to evaluate the physiological impact of salt on water deficit-induced stress response, we cultivated seedlings for 12 days, in the presence or absence of 100 mmol l−1 NaCl, on a nutrient solution containing either 0 mmol l−1 or 25 mmol l−1 mannitol. Mannitol-induced water stress reduced growth, increased the root/shoot ratio, and led to a significant decrease in water potential and leaf relative water content, whereas leaf Na+ and K+ concentrations remained unchanged. The addition of 100 mmol l−1 NaCl to 25 mmol l−1 mannitol-containing medium mitigated the deleterious impact of water stress on growth of S. portulacastrum, improved the relative water content, induced a significant decrease in leaf water potential and, concomitantly, resulted in enhancement of overall plant photosynthetic activity (i.e. CO2 net assimilation rate, stomatal conductance). Presence of NaCl in the culture medium, together with mannitol, significantly increased the level of Na+ and proline in the leaves, but it had no effect on leaf soluble sugar content. These findings suggest that the ability of NaCl to improve plant performance under mannitol-induced water stress may be due to its effect on osmotic adjustment through Na+ and proline accumulation, which is coupled with an improvement in photosynthetic activity. A striking recovery in relative water content and growth of the seedlings was also recorded in the presence of NaCl on release of the water stress induced by mannitol.  相似文献   

13.
Leaf gas exchange, plant growth and leaf ion content were measured in wheat (Triticum durum L. cv. HD 4502) exposed to steady- state salinities (1.6, 12.0 and 16.0 dS nr−1) for 8 weeks. Salinity reduced leaf area and number of tillers, and increased Na+ and Cl concentrations in leaves. Leaf- to- leaf gradients of these ions were observed. The oldest leaf contained 6 to 8 times more Na+ and Cl than the flag leaf. Net photosynthetic rate (PN), transpiration rate (E) and stomatal conductance (gS) were the highest in flag leaf, declined in the middle and fully expanded leaves, and were minimum in the oldest leaves. These processes were reduced by salinity with similar leaf- to- leaf gradients. Intercellular CO2 concentrations in the older leaves were higher than in the flag leaf in non-saline plants, and increased similarly with salinity. Leaf age was the major factor in reducing PN, and senescence processes were promoted by salinity.  相似文献   

14.
Plant growth, photosynthetic parameters, chloroplast ultrastructure, and the ascorbate-glutathione cycle system in chloroplasts of self-grafted and rootstock-grafted cucumber leaves were investigated. Grafted plants were grown hydroponically and were exposed to 0, 50, and 100 mM NaCl concentrations for 10 days. Under NaCl stress, the hydrogen peroxide (H2O2) content in cucumber chloroplasts increased, the chloroplast ultrastructure was damaged, and the gas stomatal conductance, intercellular CO2 concentration, as well as shoot dry weight, plant height, stem diameter, leaf area, and leaf relative water content were inhibited, whereas these changes were less severe in rootstock-grafted plants. The activities of ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and dehydroascorbate reductase (DHAR EC 1.8.5.1) were higher in the chloroplasts of rootstock-grafted plants compared with those of self-grafted plants under 50 and 100 mM NaCl. Similar trends were shown in leaf net CO2 assimilation rate and transpiration rate, as well as reduced glutathione content under 100 mM NaCl. Results suggest that rootstock grafting enhances the H2O2-scavenging capacity of the ascorbate–glutathione cycle in cucumber chloroplasts under NaCl stress, thereby protecting the chloroplast structure and improving the photosynthetic performance of cucumber leaves. As a result, cucumber growth is promoted.  相似文献   

15.
The effects of salinity on growth, leaf nutrient content, water relations, gas exchange parameters and chlorophyll fluorescence were studied in six-month-old seedlings of citrus (Citrus limonia Osbeck) and rooted cuttings of olive (Olea europaea L. cv. Arbequina). Citrus and olive were grown in a greenhouse and watered with half strength Hoagland’s solution plus 0 or 50 mM NaCl for citrus, or plus 0 or 100 mM NaCl for olive. Salinity increased Cl and Na+ content in leaves and roots in both species and reduced total plant dry mass, net photosynthetic rate and stomatal conductance. Decreased growth and gas exchange was apparently due to a toxic effect of Cl and/or Na+ and not due to osmotic stress since both species were able to osmotically adjust to maintain pressure potential higher than in non-salinized leaves. Internal CO2 concentration in the mesophyll was not reduced in either species. Salinity decreased leaf chlorophyll a content only in citrus.  相似文献   

16.
The aim of this study was to investigate the effects of NaCl-salinity on the physiological attributes in common reed, Phragmites australis (Cav.) Trin. ex Steudel. Plants grew optimally under salinity treatment with standard nutrient solution without added salt and at NaCl concentrations up to 100 mM. Applied for 21 days, NaCl-salinity (300 and 500 mM) caused a significant reduction in growth allocation of all different tissues of P. australis. Shoot growth of reed plants displayed a highly significant correlation with plant–water relations and photosynthetic parameters. The net photosynthetic rate and stomatal conductance of reed plants treated with NaCl-salinity at varying osmotic potential (ψπ) of nutrient solutions were positively correlated, and the former variable also had a strong positive relationship with transpiration rate. Leaf water potential and ψπ followed similar trends and declined significantly as ψπ of watering solutions was lowered. The increase in total inorganic nutrients resulting from increased Na+ and Cl in all tissues and K+, Ca2+ and Mg2+ concentrations were maintained even at the most extreme salt concentration. Common reed exhibited high K+/Na+ and Ca2+/Na+ selectivity ratios over a wide range of salinities under NaCl-salinity. These findings suggest that reed plants were able to adapt well to high salinities by lowering their leaf ψπ and the adjustment of osmotically active solutes in the leaves.  相似文献   

17.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   

18.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

19.
Glaucium flavum Crantz. is found in an anthropized coastal grassland at the joint estuary of the Tinto and Odiel rivers (SW Spain), growing under the influence of high levels of copper contamination derived from nearby petrochemical industries, with no obvious adverse affects on the performance of the plant. In addition, this species exhibits a series of ecological characteristics which may render it appropriate for use in the phytoremediation of contaminated areas. Nonetheless, the response of G. flavum to elevated copper concentrations has not been studied. A greenhouse experiment was conducted to investigate the effects of a range of Cu concentrations (0 to 47 mmol l−1) on the growth, reproduction and photosynthetic performance of G. flavum, by measuring relative growth rate, fruit and seed production, chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined total copper, nitrogen, phosphorous, sulphur, calcium and magnesium concentrations. G. flavum survived with concentrations of up to 730 mg Cu kg−1 DW in the leaves, when treated with 30 mmol Cu l−1 (2000 mg l−1). Quantum efficiency of PSII, net photosynthesis rate, as well as leaf Ca and Mg concentrations were all negatively affected by Cu concentrations greater than 9 mmol l−1 in the nutrient solution. Our results indicate that the reduction in photosynthetic performance may be attributed to the adverse effect of excess Cu on the photosynthetic apparatus of the plant, both directly, via a decrease in pigment concentrations, and indirectly, via interference of Cu with Ca ions of PSII. Growth and seed production were only slightly affected by leaf tissue concentrations as high as 230 mg Cu kg−1 dry mass, which suggests that this species could play an important role in phytoremediation of Cu-contaminated soils.  相似文献   

20.
In the xantha1 (xan1) mutant of sunflower (Helianthus annuus L.), the effects on organ anatomy and seedling growth did correlate to the alteration of chloroplast biogenesis. The xan1 seedlings grown under 165 μmol(photon) m−2 s−1 revealed a severely altered chloroplast ultrastructure in cotyledons and leaves. Cross-sections or clarified tissues of the xan1 cotyledons did not show evident alterations with respect to normal cotyledons suggesting that the impairment of chloroplast biogenesis has negligible consequences on embryonic leaves. By contrast, the analysis of xan1 leaves showed that the defects in chloroplast biogenesis were correlated to a drastic reduction of organ size and to a clear enhancement of the trichome growth. The differentiation of palisade and spongy parenchyma in cotyledons and leaves of the xan1 mutant was normal but both organs displayed a drastic reduction in the plastid number with respect to wild type. In addition, xan1 hypocotyls showed a reduced development of the main vascular bundles in comparison with normal seedlings and an undersized central cylinder of the primary root. The exogenous supply of sucrose was not sufficient to revert in vitro the deficit of xan1 growth and the constraints in morphogenetic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号