首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

2.
Mammalian TCR delta genes are located in the midst of the TCR alpha gene locus. In the chicken, one large V delta gene family, two D delta gene segments, two J delta gene segments, and one C delta gene have been identified. The TCR delta genes were deleted on both alleles in alpha beta T cell lines, thereby indicating conservation of the combined TCR alpha delta locus in birds. V alpha and V delta gene segments were found to rearrange with one, both or neither of the D delta segments and either of the two J delta segments. Exonuclease activity, P-addition, and N-addition during VDJ delta rearrangement contributed to TCR delta repertoire diversification in the first embryonic wave of T cells. An unbiased V delta 1 repertoire was observed at all ages, but an acquired J delta 1 usage bias occurred in the TCR delta repertoire. The unrestricted combinatorial diversity of relatively complex TCR gamma and delta loci may contribute to the remarkable abundance of gamma delta T cells in this avian representative.  相似文献   

3.
The gene for the T-cell antigen receptor (TCR) delta chain is a gene within a gene, being located in the TCR alpha chain gene in both mice and humans. The human delta locus is flanked by delta deleting elements that undergo preferential rearrangement in the thymus, resulting in deletion of internal delta coding segments. The mouse has conserved analogous elements, m delta Rec and m phi J alpha, which separate delta from alpha and undergo a m delta Rec/m phi J alpha rearrangement in polyclonal thymus. The 5' element, m delta Rec, which is an isolated heptamer-spacer-nonamer (h-s-n), lies within 200 kb of D delta 1, and displays two areas of nearly 80% homology to human delta Rec. The downstream element, m phi J alpha, lies 12.5 kb 3' to C delta, lacks the consensus amino acids for J alpha, and retains 80% homology to human phi J alpha. Cells from murine neonatal thymus show three prominent m delta Rec rearrangements consisting of the m delta Rec/m phi J alpha recombination, a delta Rec/D delta 1/D delta 2/J delta 1 recombination, and two hybrid recombinations. A consequence of the m delta Rec/M phi J alpha rearrangement is a deletion of internal D delta and J delta coding segments that would prevent their incorporation into alpha TCR products. The conservation of noncoding deleting elements flanking the delta TCR in mice and humans is similar to the evolutionarily preserved kappa deleting element of the B-cell lineage and argues for an important role in receptor utilization.  相似文献   

4.
A highly malignant human T-cell receptor (TCR) gamma/delta+ T-cell leukemia was shown to have a productive rearrangement of the TCR delta locus on one chromosome 14 and a novel t(8;14)(q24;q11) rearrangement involving the J delta 1 gene segment on the other chromosome 14. Chromosome walking coupled with pulsed-field gel electrophoretic (PFGE) analysis determined that the TCR J delta 1 gene fragment of the involved chromosome was relocated approximately 280 kb downstream of the c-myc proto-oncogene locus found on chromosome band 8q24. This rearrangement was reminiscent of the Burkitt's lymphoma variants that translocate to a region identified as the pvt-1 locus. Sequence comparison of the breakpoint junctions of interchromosomal rearrangements in T-cell leukemias involving the TCR delta-chain locus revealed novel signal-like sequence motifs, GCAGA(A/T)C and CCCA(C/G)GAC. These sequences were found on chromosome 8 at the 5' flanking site of the breakpoint junction of chromosome 8 in the TCR gamma/delta leukemic cells reported here and also on chromosome 1 in T-cell acute lymphocytic leukemia patients carrying the t(1;14)(p32;q11) rearrangement. These results suggest that (i) during early stages of gamma delta T-cell ontogeny, the region 280 kb 3' of the c-myc proto-oncogene on chromosome 8 is fragile and accessible to the lymphoid recombination machinery and (ii) rearrangements to both 8q24 and 1p32 may be governed by novel sequence motifs and be subject to common enzymatic mechanisms.  相似文献   

5.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

6.
Bulk populations and 39 hybridomas from splenic Con A cultures were analyzed for rearrangements among TCR genes: alpha, beta, gamma, and delta. Patterns were categorized to reveal general rules governing gene rearrangement within the activated adult peripheral population. Many patterns of gene rearrangement were consistent with previous studies of T cell lines. Additional points of interest were the following: 1) A large proportion of Con A-stimulated splenic cells bore no TCR gene rearrangements. 2) One splenic hybridoma exhibited an unusual gene pattern, with rearrangements, at alpha and beta, but not J gamma 1 or J gamma 2 loci. 3) Multiple gamma rearrangements were noted other than V1.2-J2 and V2-J1. 4) One hybridoma exhibited TCR gene rearrangements typical of day 14 to 15 fetal thymocytes, as well as rearrangements at immunoglobulin gene loci. 5) Among hybridomas with J alpha rearrangements, homologous chromosomes exhibited rearrangements at similar positions along the J alpha locus.  相似文献   

7.
The nature of TCR gamma and delta gene rearrangements in 4- to 6-week-old scid thymocytes was examined by using the polymerase chain reaction technique, cloning, and DNA sequencing. Analysis of 78 sequences indicates that TCR gamma and delta gene rearrangements in scid mice generally resemble those in thymocytes from normal young adult mice. V gamma 1, V gamma 2, and V gamma 5 rearrangements are heterogeneous, with extensive N region addition and nucleotide excision from the recombining coding segments. In addition, homogeneous and fetal-like V gamma 3, V gamma 4, and V delta 1 rearrangements are observed. These rearrangements are currently difficult to interpret but may be significant with respect to whether certain homogeneous joints in normal mice are due to cellular selection or to the rearrangement process. scid TCR gamma and delta gene nucleotide sequences also reveal direct V-J delta joining, inter-(V-J-C gamma) cluster joining, and the possibility of inversional rearrangement at the gamma locus. Short sequence homologies may contribute to V(D)J recombination and to the rescue of blocked coding joints.  相似文献   

8.
A transgene with 8.4-kb of regulatory sequence from the murine IL-2 gene drives consistent expression of a green fluorescent protein (GFP) reporter gene in all cell types that normally express IL-2. However, quantitative analysis of this expression shows that different T cell subsets within the same mouse show divergent abilities to express the transgene as compared with endogenous IL-2 genes. TCR gamma delta cells, as well as alpha beta TCR-NKT cells, exhibit higher in vivo transgene expression levels than TCR alpha beta cells. This deviates from patterns of normal IL-2 expression and from expression of an IL-2-GFP knock-in. Peripheral TCR gamma delta cells accumulate GFP RNA faster than endogenous IL-2 RNA upon stimulation, whereas TCR alpha beta cells express more IL-2 than GFP RNA. In TCR gamma delta cells, IL-2-producing cells are a subset of the GFP-expressing cells, whereas in TCR alpha beta cells, endogenous IL-2 is more likely to be expressed without GFP. These results are seen in multiple independent transgenic lines and thus reflect functional properties of the transgene sequences, rather than copy number or integration site effects. The high ratio of GFP: endogenous IL-2 gene expression in transgenic TCR gamma delta cells may be explained by subset-specific IL-2 gene regulatory elements mapping outside of the 8.4-kb transgene regulatory sequence, as well as accelerated kinetics of endogenous IL-2 RNA degradation in TCR gamma delta cells. The high levels and percentages of transgene expression in thymic and splenic TCR gamma delta and NKT cells, as well as skin TCR gamma delta-dendritic epidermal T cells, indicate that the IL-2-GFP-transgenic mice may provide valuable tracers for detecting developmental and activation events in these lineages.  相似文献   

9.
10.
Expression of a beta-chain, as a pre-TCR, in T cell precursors prevents further rearrangements on the alternate beta allele through a strict allelic exclusion process and enables precursors to undergo differentiation. However, whether allelic exclusion applies to the TCR delta locus is unknown and the role of the gamma delta TCR in gamma delta lineage commitment is still unclear. Through the analysis of the rearrangement status of the TCR gamma, delta, and beta loci in human gamma delta T cell clones, expressing either the TCR V delta 1 or V delta 2 variable regions, we show that the rate of partial rearrangements at the delta locus is consistent with an allelic exclusion process. The overrepresentation of clones with two functional TCR gamma chains indicates that a gamma delta TCR selection process is required for the commitment of T cell precursors to the gamma delta lineage. Finally, while complete TCR beta rearrangements were observed in several V delta 2 T cell clones, these were seldom found in V delta 1 cells. This suggests a competitive alpha beta/gamma delta lineage commitment in the former subset and a precommitment to the gamma delta lineage in the latter. We propose that these distinct behaviors are related to the developmental stage at which rearrangements occur, as suggested by the patterns of accessibility to recombination sites that characterize the V delta 1 and V delta 2 subsets.  相似文献   

11.
Human T cell tumours have few consistently occurring translocations which provide markers for this disease. The translocation t(11;14)(p13;q11), however, seems to be an exception, since it has been repeatedly observed in T-ALL. We have analysed a number of T-ALL samples carrying the t(11;14) with a view to assessing the nature of the translocated sequences on chromosomes 11 and 14. Three of the tumours studied have breakpoints, at 14q11, within the T cell receptor delta chain locus, while a fourth appears to break in the J alpha region. The TCR delta sequences involved in the translocation junctions are made from D delta-D delta-J delta joins or from D delta-D delta joins, allowing us to define distinct human D delta and J delta segments. These results allow us to make a comparison between the human and mouse TCR delta loci, both as regards sequence and rearrangement hierarchies. The disparate translocation breakpoints at chromosome 14q11 contrast with the marked clustering of breaks at chromosome 11p13; in all four cases, the breakpoint occurs within a region of less than 0.8 kb of chromosome 11. The analysis of junctional sequences at the 11p13 breakpoint cluster region only shows a consensus heptamer-like sequence in one out of four tumours analysed. Therefore, recombinase-mediated sequence specific recognition is not the only cause of chromosomal translocation.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The T cell rearrangement of the T cell receptor (TCR) genes TCRalpha and delta is specifically regulated by a complex interplay between enhancer elements and chromatin structure. The alpha enhancer is active in T cells and drives TCRalpha recombination in collaboration with a locus control region-like element located downstream of the Calpha gene on mouse chromosome 14. Twelve kb further down-stream lies another gene, Dad1, with a program of expression different from that of TCRalpha. The approximately 6-kb locus control region element lying between them contains multiple regulatory sites with a variety of roles in regulating the two genes. Previous evidence has indicated that among these there are widely distributed regions with enhancer blocking (insulating) activity. We have shown in this report that one of these sites, not previously examined, strongly binds the insulator protein CCTC-binding factor (CTCF) in vitro and in vivo and can function in an enhancer blocking assay. However, other regions within the 6-kb element that also can block enhancers clearly do not harbor CTCF sites and thus must reflect the presence of a previously undetected and distinct vertebrate insulator activity.  相似文献   

19.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

20.
Cutaneous immune responses to contact sensitizers such as picryl chloride or oxazolone, are classical manifestations of T cell-mediated immunity in vivo. In fact, the first documentation of T cell-mediated immunity was the ability to adoptively transfer contact sensitivity (CS) responses. Although it is now clear that Ag/MHC-restricted alpha beta TCR positive effector T cells are responsible for 24 to 48 h CS responses, other subsets of Thy-1+ cells in mice also participate in the elicitation of CS. Thus, Thy-1+, CD5+, CD3-, B220+, hapten-specific, non-MHC-restricted early-acting cells are required to initiate CS responses by leading to local serotonin release, which allows for extravascular recruitment of the late-acting, alpha beta TCR+, CS effector T cells. This study describes another T cell population that is needed for the adoptive transfer of CS by alpha beta T cells. In vitro treatment of a mixture of CS effector cells with hamster mAb to gamma delta TCR, together with rabbit complement, or by panning on anti-hamster Ig-coated dishes, diminished substantially the subsequent transfer of CS reactivity without affecting either CS-initiating cells, or the later-acting, alpha beta TCR+ CS effector T cells. Immune cells treated with anti-alpha beta TCR mAb, or recovered as adherent cells from petri dishes after anti-gamma delta TCR panning (i.e., gamma delta TCR-enriched cells), reconstituted the ability of anti-gamma delta TCR-treated immune cells (i.e., alpha beta TCR-enriched cells) to transfer 24-h CS responsiveness. The phenotype of the gamma delta T cells that assisted CS effector alpha beta T cells was: CD3+, CD4-, and CD8+. The gamma delta T cells that assisted alpha beta T cells were not Ag-specific since anti-alpha beta-TCR-treated cells (gamma delta T-enriched) from picryl chloride immunized donors aided alpha beta T cells (anti-gamma delta TCR-treated) from oxazolone-immunized donors, and conversely gamma delta T cells from oxazolone-immunized donors aided alpha beta T cells from picryl chloride immunized donors. Furthermore, the CS-regulating gamma delta T cells were not MHC-restricted because gamma delta T cells from H2d or H2b donors could assist alpha beta T cells from H2k donors. It was concluded that a regulatory population of non-Ag specific, non-MHC-restricted gamma delta T cells was needed to assist immune effector, Ag/MHC-specific alpha beta T cells in the adoptive transfer of CS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号