首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cigarette smoking (CS) has been strongly linked to several health conditions including heart disease, lung cancer, and other respiratory and circulatory ailments. Deleterious effects of cigarette smoking on skin have also been well documented, but unlike effects on other organs, damage does not depend upon inhalation. The upper layer of the skin, the stratum corneum (rich in cholesterol fatty acids and ceramide), is very susceptible to damage induced by exposure to environmental stressors that can modify its lipid composition and thereby affect its function of protecting skin from dehydration. Scavenger receptor B1 (SR-B1) is involved in the uptake of cholesterol in several tissues including skin. We previously demonstrated that CS exposure induces formation of aldehyde (HNE) adducts that decrease SR-B1 expression. As topical resveratrol, a well-known polyphenolic stilbene, has been demonstrated to show benefits against skin disorders, we investigated its possible role as a protective agent against CS-induced reduction of SR-B1 expression in cutaneous tissue. In this study, we demonstrate that resveratrol at doses ranging from 0.5 to 10 μM is not toxic and is able to increase SR-B1 protein levels in a dose-dependent manner in human keratinocytes. Moreover, when the cells that were pretreated with various doses of resveratrol were exposed to CS, the loss of SR-B1 was prevented in a dose-dependent manner. In addition, in keratinocytes, resveratrol was also able to prevent an increase in HNE–protein adducts induced by CS. In particular resveratrol was able to prevent HNE–SR-B1 adduct formation. Thus, resveratrol seems to be a natural compound that could provide skin with a defense against exogenous stressors by protecting the essential cholesterol receptor, SR-B1.  相似文献   

2.
Neuroblastoma (NB) is an extra cranial pediatric embryonal tumor most prevalent in children less than 1 year of age. NB accounts for 7% of all pediatric cancers but accounts for 15% of all childhood cancer deaths. Scavenger receptor class B type 1 (SR-B1), a mediator of cellular cholesterol uptake, is overexpressed in and have been linked to the aggressiveness of many cancers. Nevertheless, no studies have so far investigated the relationship between SR-B1 and NB. Elucidation of receptors that promote NB may pave the way for discovery of new therapeutic targets. Here we show that inhibition of SR-B1 reduced cell survival, migration and invasion, and cholesterol content in NB cell lines. Additionally analysis of SR-B1 levels in NB patient biopsies using the R2: Genomics Analysis and Visualization Platform showed that high SR-B1 expression correlated with decreased overall and event-free survival.  相似文献   

3.
Clear cell renal cell carcinoma (ccRCC), which accounts for the majority of kidney cancer, is known to accumulate excess cholesterol. However, the mechanism and functional significance of the lipid accumulation for development of the cancer remains obscure. In this study, we analyzed 42 primary ccRCC samples, and determined that cholesterol levels of ~ 70% of the tumors were at least two-fold higher than that of benign kidney tissues. Compared to tumors without cholesterol accumulation, those containing excess cholesterol expressed higher levels of scavenger receptor BI (SR-B1), a receptor for uptake of HDL-associated cholesterol, but not genes involved in cholesterol synthesis and uptake of LDL-associated cholesterol. To further determine the roles of sterol accumulation for cancer development, we implanted ccRCC from patients into mouse kidneys using a mouse ccRCC xenograft model. Feeding mice with probucol, a compound lowing HDL-cholesterol, markedly reduced levels of cholesterol in tumors containing excess cholesterol. This treatment, however, did not affect growth of these tumors. Our study suggests that cholesterol overaccumulation in ccRCC is the consequence of increased uptake of HDL-cholesterol as a result of SR-B1 overexpression, but the lipid accumulation by itself may not play a significant role in progression of the cancer.  相似文献   

4.
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.  相似文献   

5.
Although in vitro studies suggest a role for sterol carrier protein-2 (SCP-2) in cholesterol trafficking and metabolism, the physiological significance of these observations remains unclear. This issue was addressed by examining the response of mice overexpressing physiologically relevant levels of SCP-2 to a cholesterol-rich diet. While neither SCP-2 overexpression nor cholesterol-rich diet altered food consumption, increased weight gain, hepatic lipid, and bile acid accumulation were observed in wild-type mice fed the cholesterol-rich diet. SCP-2 overexpression further exacerbated hepatic lipid accumulation in cholesterol-fed females (cholesterol/cholesteryl esters) and males (cholesterol/cholesteryl esters and triacyglycerol). Primarily in female mice, hepatic cholesterol accumulation induced by SCP-2 overexpression was associated with increased levels of LDL-receptor, HDL-receptor scavenger receptor-B1 (SR-B1) (as well as PDZK1 and/or membrane-associated protein 17 kDa), SCP-2, liver fatty acid binding protein (L-FABP), and 3α-hydroxysteroid dehydrogenase, without alteration of other proteins involved in cholesterol uptake (caveolin), esterification (ACAT2), efflux (ATP binding cassette A-1 receptor, ABCG5/8, and apolipoprotein A1), or oxidation/transport of bile salts (cholesterol 7α-hydroxylase, sterol 27α-hydroxylase, Na+/taurocholate cotransporter, Oatp1a1, and Oatp1a4). The effects of SCP-2 overexpression and cholesterol-rich diet was downregulation of proteins involved in cholesterol transport (L-FABP and SR-B1), cholesterol synthesis (related to sterol regulatory element binding protein 2 and HMG-CoA reductase), and bile acid oxidation/transport (via Oapt1a1, Oatp1a4, and SCP-x). Levels of serum and hepatic bile acids were decreased in cholesterol-fed SCP-2 overexpression mice, especially in females, while the total bile acid pool was minimally affected. Taken together, these findings support an important role for SCP-2 in hepatic cholesterol homeostasis.  相似文献   

6.
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.  相似文献   

7.
The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats. Pools of cDNAs prepared from rat intestinal cells enriched in enterocytes were introduced into BW5147 cells and screened for SCH354909 binding. Several independent clones were isolated and all found to encode the scavenger receptor class B, type I (SR-BI), a protein suggested by others to play a role in cholesterol absorption. SCH354909 bound to Chinese hamster ovary (CHO) cells expressing SR-BI in specific and saturable fashion and with high affinity (K(d) approximately 18 nM). Overexpression of SR-BI in CHO cells resulted in increased cholesterol uptake that was blocked by micromolar concentrations of ezetimibe. Analysis of rat intestinal sections by in situ hybridization demonstrated that SR-BI expression was restricted to enterocytes. Cholesterol absorption was determined in SR-B1 knockout mice using both an acute, 2-h, assay and a more chronic fecal dual isotope ratio method. The level of intestinal cholesterol uptake and absorption was similar to that seen in wild-type mice. When assayed in the SR-B1 knockout mice, the dose of ezetimibe required to inhibit hepatic cholesterol accumulation induced by a cholesterol-containing 'western' diet was similar to wild-type mice. Thus, the binding of ezetimibe to cells expressing SR-B1 and the functional blockade of SR-B1-mediated cholesterol absorption in vitro suggest that SR-B1 plays a role in intestinal cholesterol metabolism and the inhibitory activity of ezetimibe. In contrast studies with SR-B1 knockout mice suggest that SR-B1 is not essential for intestinal cholesterol absorption or the activity of ezetimibe.  相似文献   

8.
Although lipid-rich microdomains of hepatocyte plasma membranes serve as the major scaffolding regions for cholesterol transport proteins important in cholesterol disposition, little is known regarding intracellular factors regulating cholesterol distribution therein. On the basis of its ability to bind cholesterol and alter hepatic cholesterol accumulation, the cytosolic liver type FA binding protein (L-FABP) was hypothesized to be a candidate protein regulating these microdomains. Compared with wild-type hepatocyte plasma membranes, L-FABP gene ablation significantly increased the proportion of cholesterol-rich microdomains. Lack of L-FABP selectively increased cholesterol, phospholipid (especially phosphatidylcholine), and branched-chain FA accumulation in the cholesterol-rich microdomains. These cholesterol-rich microdomains are important, owing to enrichment therein of significant amounts of key transport proteins involved in uptake of cholesterol [SR-B1, ABCA-1, P-glycoprotein (P-gp), sterol carrier binding protein (SCP-2)], FA transport protein (FATP), and glucose transporters 1 and 2 (GLUT1, GLUT2) insulin receptor. L-FABP gene ablation enhanced the concentration of SCP-2, SR-B1, FATP4, and GLUT1 in the cholesterol-poor microdomains, with functional implications in HDL-mediated uptake and efflux of cholesterol. Thus L-FABP gene ablation significantly impacted the proportion of cholesterol-rich versus -poor microdomains in the hepatocyte plasma membrane and altered the distribution of lipids and proteins involved in cholesterol uptake therein.  相似文献   

9.
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.  相似文献   

10.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

11.
There is strong epidemiological association between periodontal disease and cardiovascular disease but underlying mechanisms remain ill-defined. Because the human periodontal disease pathogen, Porphyromonas gingivalis (Pg), interacts with innate immune receptors Toll-like Receptor (TLR) 2 and CD36/scavenger receptor-B2 (SR-B2), we studied how CD36/SR-B2 and TLR pathways promote Pg-mediated atherosclerosis. Western diet fed low density lipoprotein receptor knockout (Ldlr°) mice infected orally with Pg had a significant increase in lesion burden compared with uninfected controls. This increase was entirely CD36/SR-B2-dependent, as there was no significant change in lesion burden between infected and uninfected Ldlr° mice. Western diet feeding promoted enhanced CD36/SR-B2-dependent IL1β generation and foam cell formation as a result of Pg lipopolysaccharide (PgLPS) exposure. CD36/SR-B2 and TLR2 were necessary for inflammasome activation and optimal IL1ß generation, but also resulted in LPS induced lethality (pyroptosis). Modified forms of LDL inhibited Pg-mediated IL1ß generation in a CD36/SR-B2-dependent manner and prevented pyroptosis, but promoted foam cell formation. Our data show that Pg infection in the oral cavity can lead to significant TLR2-CD36/SR-B2 dependent IL1ß release. In the vessel wall, macrophages encountering systemic release of IL1ß, PgLPS and modified LDL have increased lipid uptake, foam cell formation, and release of IL1ß, but because pyroptosis is inhibited, this enables macrophage survival and promotes increased plaque development. These studies may explain increased lesion burden as a result of periodontal disease, and suggest strategies for development of therapeutics.  相似文献   

12.
Class B scavenger receptors (SR-Bs) interact with native, acetylated and oxidized low-density lipoprotein (LDL, AcLDL and OxLDL), high-density lipoprotein (HDL3) and maleylated BSA (M-BSA). The aim of this study was to analyze the catabolism of CD36- and LIMPII-analogous-1 (CLA-1), the human orthologue for the scavenger receptor class B type I (SR-BI), and CD36 ligands in HepG2 (human hepatoma) cells. Saturation binding experiments revealed moderate-affinity binding sites for all the SR-B ligands tested with dissociation constants ranging from 20 to 30 microg.mL-1. Competition binding studies at 4 degrees C showed that HDL and modified and native LDL share common binding site(s), as OxLDL competed for the binding of 125I-LDL and 125I-HDL3 and vice versa, and that only M-BSA and LDL may have distinct binding sites. Degradation/association ratios for SR-B ligands show that LDL is very efficiently degraded, while M-BSA and HDL3 are poorly degraded. The modified LDL degradation/association ratio is equivalent to 60% of the LDL degradation ratio, but is three times higher than that of HDL3. All lipoproteins were good cholesteryl ester (CE) donors to HepG2 cells, as a 3.6-4.7-fold CE-selective uptake ([3H]CE association/125I-protein association) was measured. M-BSA efficiently competed for the CE-selective uptake of LDL-, OxLDL-, AcLDL- and HDL3-CE. All other lipoproteins tested were also good competitors with some minor variations. Hydrolysis of [3H]CE-lipoproteins in the presence of chloroquine demonstrated that modified and native LDL-CE were mainly hydrolyzed in lysosomes, whereas HDL3-CE was hydrolyzed in both lysosomal and extralysosomal compartments. Inhibition of the selective uptake of CE from HDL and native modified LDL by SR-B ligands clearly suggests that CLA-1 and/or CD36 are involved at least partially in this process in HepG2 cells.  相似文献   

13.
Due to the insufficient fetal cholesterol synthesis, maternal cholesterol transport through the placenta becomes an important source of fetal cholesterol pool, which is essential for fetal growth and development. This study aimed to investigate the effects of dexamethasone on fetal cholesterol levels, and explore its placental mechanism. Pregnant Wistar rats were injected subcutaneously with dexamethasone (0.8 mg/kg·d) from gestational day 9 to 20. Results showed that dexamethasone increased maternal serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C) levels, as well as placental cholesterol synthesis and TC concentration, while reduced fetal birth weight, and serum TC, HDL-C and LDL-C levels. Meanwhile, the expression of placental cholesterol transporters, including low-density lipoprotein receptor (LDLR), scavenger receptor class B type I (SR-B1) and ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) were decreased by dexamethasone. Furthermore, the expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) were increased, while the H3K9ac and expression levels of liver X receptor α (LXRα) promoter were reduced. In human trophoblast cell line (BeWo), dexamethasone concentration-dependently decreased the expression levels of LDLR, SR-B1, ABCA1, ABCG1 as well as LXRα. Dexamethasone (2500 nM) induced GR translocation into nucleus and recruited HDAC3. Furthermore, LXRα agonist and GR inhibitor reversed respectively dexamethasone-induced the expression inhibitions of cholesterol transporter and LXRα, and HDAC3 siRNA reversed the H3K9ac level of LXRα promoter and its expression. Together, dexamethasone impaired placental cholesterol transport and eventually decreased fetal cholesterol levels, which is related to the down-regulation of LXRα mediated by GR/HDAC3/H3K9ac signaling.  相似文献   

14.
The present study demonstrated that oxidized LDL (oLDL) increased the generation of superoxide and hydrogen peroxide (H(2)O(2)), the abundances of NADPH oxidase (NOX)4, NOX2, p22-phox and lectin-like oLDL receptor-1 (LOX-1) in wild-type or heat shock factor-1 (HSF1)-deficient mouse embryo fibroblasts (MEF). LOX-1 antibody inhibited LDL or oLDL-induced expression of NOX components in MEF. Abundance of HSF1 or plasminogen activator inhibitor-1 (PAI-1) was increased by oLDL in wild-type, but not in HSF1-deficient MEF. Diphenyleneiodonium or siRNA for NOX or p22-phox inhibited oLDL-induced increases of HSF1, PAI-1 and H(2)O(2) in MEF. Increased NOX4, NOX2, LOX1, HSF1 and PAI-1 were detected in aortae and hearts of apolipoprotein E-knockout (apoE-KO) mice compared to controls, which were associated with increased serum cholesterol or plasma PAI-1. The results suggest that NOX is required for oLDL-induced HSF1 or PAI-1 expression in MEF, which was supported by the up-regulation of NOX, LOX-1, HSF1 and PAI-1 in apoE-KO mice.  相似文献   

15.
本文综述了脱落酸作为根源信号物质经由木质部被传递到叶片,经重新分配再与脱落酸受体结合,然后刺激气孔开放因子,调节烟酰胺腺嘌呤二核苷酸磷酸氧化酶等关键酶活性产生过氧化氢,过氧化氢可使胞质碱化并刺激钙离子通道使钙离子内流,活化阴离子通道使阴离子外流,最终导致气孔关闭的一系列过程。该过程涉及到的因子包括:脱落酸受体、气孔开放因子、磷脂酰环己六醇、分裂原激活蛋白激酶、烟酰胺腺嘌呤二核苷酸磷酸氧化酶、Ca^(2+)、pH、一氧化氮等。  相似文献   

16.
Dehydroepiandrosterone (DHEA) fatty acyl esters once incorporated in high density lipoprotein (HDL) induce a stronger vasodilatory response in rat mesenteric arteries ex vivo compared to native HDL. We studied the role of HDL receptor, scavenger receptor class B, type 1 (SR-B1), as well as estrogen and androgen receptors in the vasodilatory response of HDL-associated DHEA fatty acyl esters. Using cultured human vascular endothelial cells (HUVEC), we investigated the possible internalization and cellular response of HDL-associated DHEA esters. We prepared DHEA ester-enriched HDL by incubating human plasma in the presence of DHEA. After isolation and purification, HDL was added in cumulative doses to arterial rings precontracted with noradrenaline. Inhibition of the function of SR-B1 almost completely abolished maximal vasorelaxation by DHEA-enriched HDL while estrogen or androgen receptor blockage had no significant effect. When HUVECs were incubated in the presence of [3H]DHEA ester-enriched HDL, the amount of intracellular [3H]-radioactivity increased steadily during 24 h. Blocking of SR-B1 reduced this uptake by a mean of 30%. The proportion of unesterified [3H]DHEA, as analyzed by thin-layer chromatography, increased intracellularly and in the cell culture media after several hours of incubation of the cells in the presence of [3H]DHEA ester-enriched HDL. This indicated slow hydrolysis of DHEA fatty acyl esters and subsequent excretion of unesterified DHEA by the cells. In conclusion, DHEA-enriched HDL induced vasorelaxation via the SR-B1-facilitated pathway. However, this vasodilation is not likely to be attributed to rapid hydrolysis of HDL-associated DHEA esters by the vascular endothelium.  相似文献   

17.
Scavenger receptor class B type I (SR-BI) is a major receptor of the high-density lipoprotein that mediates cholesterol efflux and reverse cholesterol transport. Alternative splicing of the scavenger receptor class B (SR-B) gene is observed and different splice forms, SR-BI and scavenger receptor class B type II (SR-BII), have been shown to function and localize in distinct ways. We have previously shown that SR-B alternative splicing regulation is associated with splicing factor ASF/SF2. In this study, using a SR-B minigene as a model, we determined the critical regulatory regions in the upstream intron, intron 11, by serial deletion and mutation analyses. We also further characterized the regulatory elements in intron 11 as well as in the skipped exon, exon 12. Moreover, we studied the interactions of these elements with the splicing factor ASF/SF2. This study provides new insights into the mechanism of SR-B splicing and it is important for further study on the mechanism of SR-B alternative splicing regulation, such as its regulation by estrogen.  相似文献   

18.

Background

The interaction between Mycobacterium tuberculosis (Mtb) and host cells is complex and far from being understood. The role of the different receptor(s) implicated in the recognition of Mtb in particular remains poorly defined, and those that have been found to have activity in vitro were subsequently shown to be redundant in vivo.

Methods and Findings

To identify novel receptors involved in the recognition of Mtb, we screened a macrophage cDNA library and identified scavenger receptor B class 1 (SR-B1) as a receptor for mycobacteria. SR-B1 has been well-described as a lipoprotein receptor which mediates both the selective uptake of cholesteryl esters and the efflux of cholesterol, and has also recently been implicated in the recognition of other pathogens. We show here that mycobacteria can bind directly to SR-B1 on transfected cells, and that this interaction could be inhibited in the presence of a specific antibody to SR-B1, serum or LDL. We define a variety of macrophage populations, including alveolar macrophages, that express this receptor, however, no differences in the recognition and response to mycobacteria were observed in macrophages isolated from SR-B1−/− or wild type mice in vitro. Moreover, when wild type and SR-B1−/− animals were infected with a low dose of Mtb (100 CFU/mouse) there were no alterations in survival, bacterial burdens, granuloma formation or cytokine production in the lung. However, significant reduction in the production of TNF, IFNγ, and IL10 were observed in SR-B1−/− mice following infection with a high dose of Mtb (1000 CFU/mouse), which marginally affected the size of inflammatory foci but did not influence bacterial burdens. Deficiency of SR-B1 also had no effect on resistance to disease under conditions of varying dietary cholesterol. We did observe, however, that the presence of high levels of cholesterol in the diet significantly enhanced the bacterial burdens in the lung, but this was independent of SR-B1.

Conclusion

SR-B1 is involved in mycobacterial recognition, but this receptor plays only a minor role in anti-mycobacterial immunity in vivo. Like many other receptors for these pathogens, the loss of SR-B1 can be functionally compensated for under normal conditions.  相似文献   

19.
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.  相似文献   

20.
17beta-estradiol (E2) fatty acyl esters naturally incorporate into high-density lipoprotein (HDL). The objective was to elucidate mechanisms involved in HDL-associated E2 cellular uptake and to determine the intracellular distribution of E2 and its fatty acyl esters (E2-FAE) after uptake. [3H]E2 or [3H] cholesterol was incubated with human serum for 24 h to allow for fatty acyl esterification. Total-HDL containing [3H]E2-FAE or [3H]cholesterol esters was isolated by sequential density ultracentrifugation and then incubated with Fu5AH rat hepatoma cells for various time points. Cellular uptake was determined by intracellular radioactivity as a percentage of total radioactivity. Chemical inhibition of scavenger receptor class B, type I and low-density lipoprotein (LDL) receptor competition assays were performed to determine cellular uptake mechanisms. Compared to HDL-[3H]cholesterol, cellular uptake of HDL-[3H]E2 occurred at an initially rapid rate. SR-BI inhibition resulted in a decrease in HDL-E2 uptake and LDL impaired this uptake in a concentration-dependent manner. Accordingly, pretreatment of cells with BLT-1 combined with LDL addition significantly attenuated HDL-E2 uptake. HDL-E2-FAE was hydrolyzed into free E2 with the maximum at 24 h. Fu5AH cells facilitate HDL-E2 uptake by at least SR-BI and LDL receptor pathways and intracellular hydrolysis of E2-FAE into free E2 ensues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号