首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Legionella pneumophila persists for a long time in aquatic habitats, where the bacteria associate with biofilms and replicate within protozoan predators. While L. pneumophila serves as a paradigm for intracellular growth within protozoa, it is less clear whether the bacteria form or replicate within biofilms in the absence of protozoa. In this study, we analyzed surface adherence of and biofilm formation by L. pneumophila in a rich medium that supported axenic replication. Biofilm formation by the virulent L. pneumophila strain JR32 and by clinical and environmental isolates was analyzed by confocal microscopy and crystal violet staining. Strain JR32 formed biofilms on glass surfaces and upright polystyrene wells, as well as on pins of “inverse” microtiter plates, indicating that biofilm formation was not simply due to sedimentation of the bacteria. Biofilm formation by an L. pneumophila fliA mutant lacking the alternative sigma factor σ28 was reduced, which demonstrated that bacterial factors are required. Accumulation of biomass coincided with an increase in the optical density at 600 nm and ceased when the bacteria reached the stationary growth phase. L. pneumophila neither grew nor formed biofilms in the inverse system if the medium was exchanged twice a day. However, after addition of Acanthamoeba castellanii, the bacteria proliferated and adhered to surfaces. Sessile (surface-attached) and planktonic (free-swimming) L. pneumophila expressed β-galactosidase activity to similar extents, and therefore, the observed lack of proliferation of surface-attached bacteria was not due to impaired protein synthesis or metabolic activity. Cocultivation of green fluorescent protein (GFP)- and DsRed-labeled L. pneumophila led to randomly interspersed cells on the substratum and in aggregates, and no sizeable patches of clonally growing bacteria were observed. Our findings indicate that biofilm formation by L. pneumophila in a rich medium is due to growth of planktonic bacteria rather than to growth of sessile bacteria. In agreement with this conclusion, GFP-labeled L. pneumophila initially adhered in a continuous-flow chamber system but detached over time; the detachment correlated with the flow rate, and there was no accumulation of biomass. Under these conditions, L. pneumophila persisted in biofilms formed by Empedobacter breve or Microbacterium sp. but not in biofilms formed by Klebsiella pneumoniae or other environmental bacteria, suggesting that specific interactions between the bacteria modulate adherence.  相似文献   

2.
Currently, models for studying Legionella pneumophila biofilm formation rely on multi-species biofilms with low reproducibility or on growth in rich medium, where planktonic growth is unavoidable. The present study describes a new medium adapted to the growth of L. pneumophila monospecies biofilms in vitro. A microplate model was used to test several media. After incubation for 6 days in a specific biofilm broth not supporting planktonic growth, biofilms consisted of 5.36 ± 0.40 log (cfu cm?2) or 5.34 ± 0.33 log (gu cm?2). The adhered population remained stable for up to 3 weeks after initial inoculation. In situ confocal microscope observations revealed a typical biofilm structure, comprising cell clusters ranging up to ~300 μm in height. This model is adapted to growing monospecies L. pneumophila biofilms that are structurally different from biofilms formed in a rich medium. High reproducibility and the absence of other microbial species make this model useful for studying genes involved in biofilm formation.  相似文献   

3.
The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation.  相似文献   

4.
5.
AIMS: To evaluate differences in biofilm or planktonic bacteria susceptibility to be killed by the polyvalent antistaphylococcus bacteriophage K. METHODS AND RESULTS: In this study, the ability of phage K to infect and kill several clinical isolates of Staphylococcus epidermidis was tested. Strains were grown in suspension or as biofilms to compare the susceptibility of both phenotypes to the phage lytic action. Most strains (10/11) were susceptible to phage K, and phage K was also effective in reducing biofilm biomass after 24 h of challenging. Biofilm cells were killed at a lower rate than the log-phase planktonic bacteria but at similar rate as stationary phase planktonic bacteria. CONCLUSIONS: Staphylococcus epidermidis biofilms and stationary growth phase planktonic bacteria are more resistant to phage K lysis than the exponential phase planktonic bacteria. SIGNIFICANCE OF STUDY: This study shows the differences in Staph. epidermidis susceptibility to be killed by bacteriophage K, when grown in biofilm or planktonic phenotypes.  相似文献   

6.
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.  相似文献   

7.
Viridans streptococci, which include Streptococcus gordonii, are pioneer oral bacteria that initiate dental plaque formation. Sessile bacteria in a biofilm exhibit a mode of growth that is distinct from that of planktonic bacteria. Biofilm formation of S. gordonii Challis was characterized using an in vitro biofilm formation assay on polystyrene surfaces. The same assay was used as a nonbiased method to screen isogenic mutants generated by Tn916 transposon mutagenesis for defective biofilm formation. Biofilms formed optimally when bacteria were grown in a minimal medium under anaerobic conditions. Biofilm formation was affected by changes in pH, osmolarity, and carbohydrate content of the growth media. Eighteen biofilm-defective mutants of S. gordonii Challis were identified based on Southern hybridization with a Tn916-based probe and DNA sequences of the Tn916-flanking regions. Molecular analyses of these mutants showed that some of the genes required for biofilm formation are involved in signal transduction, peptidoglycan biosynthesis, and adhesion. These characteristics are associated with quorum sensing, osmoadaptation, and adhesion functions in oral streptococci. Only nine of the biofilm-defective mutants had defects in genes of known function, suggesting that novel aspects of bacterial physiology may play a part in biofilm formation. Further identification and characterization of biofilm-associated genes will provide insight into the molecular mechanisms of biofilm formation of oral streptococci.  相似文献   

8.
A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation.  相似文献   

9.
细菌依其生存的环境不同能够在生物薄膜和浮游细菌两种生存形式之间转换。细菌生物薄膜的形成导致对抗生素治疗的低敏感性,是慢性感染过程中的重要因素。细菌生物薄膜形成过程涉及多种因素,相当部分已被证实为抑制生物薄膜形成的潜在靶点。本文主要就近几年抑制生物薄膜形成的靶点筛选作一介绍。  相似文献   

10.
11.
The role of bacterial biofilms in ocular infections   总被引:7,自引:0,他引:7  
There is increasing evidence that bacterial biofilms play a role in a variety of ocular infections. Bacterial growth is characterized as a biofilm when bacteria attach to a surface and/or to each other. This is distinguished from a planktonic or free-living mode of bacterial growth where these interactions are not present. Biofilm formation is a genetically controlled process in the life cycle of bacteria resulting in numerous changes in the cellular physiology of the organism, often including increased antibiotic resistance compared to growth under planktonic conditions. The presence of bacterial biofilms has been demonstrated on many medical devices including intravenous catheters, as well as materials relevant to the eye such as contact lenses, scleral buckles, suture material, and intraocular lenses. Many ocular infections often occur when such prosthetic devices come in contact with or are implanted in the eye. For instance, 56% of corneal ulcers in the United States are associated with contact lens wear. Bacterial biofilms may participate in ocular infections by allowing bacteria to persist on abiotic surfaces that come in contact with, or are implanted in the eye, and by direct biofilm formation on the biotic surfaces of the eye. An understanding of the role of bacterial biofilm formation in ocular infections may aid in the development of future antimicrobial strategies in ophthalmology. We review the current literature and concepts relating to biofilm formation and infections of the eye.  相似文献   

12.
Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm development.  相似文献   

13.
Biofilm formation and adherence properties of 13 bacterial strains commonly found in wastewater treatment systems were studied in pure and mixed cultures using a crystal violet microtiter plate assay. Four different culture media were used, wastewater, acetate medium, glucose medium and diluted nutrient broth. The medium composition strongly affected biofilm formation. All strains were able to form pure culture biofilms within 24 h in at least one of the tested culture media and three strains were able to form biofilm in all four culture media, namely Acinetobacter calcoaceticus ATCC 23055, Comamonas denitrificans 123 and Pseudomonas aeruginosa MBL 0199. The adherence properties assessed were initial adherence, cell surface hydrophobicity, and production of amyloid fibers and extracellular polymeric substances. The growth of dual-strain biofilms showed that five organisms formed biofilm with all 13 strains while seven formed no or only weak biofilm when cocultured. In dual-strain cultures, strains with different properties were able to complement each other, giving synergistic effects. Strongest biofilm formation was observed when a mixture of all 13 bacteria were grown together. These results on attachment and biofilm formation can serve as a tool for the design of tailored systems for the degradation of municipal and industrial wastewater.  相似文献   

14.
Biofilm formation by marine hydrocarbonoclastic bacteria is commonly observed and has been recognized as an important mechanism for the biodegradation of hydrocarbons. In order to colonize new oil-water interfaces, surface-attached communities of hydrocarbonoclastic bacteria must release cells into the environment. Here we explored the physiology of cells freshly dispersed from a biofilm of Marinobacter hydrocarbonoclasticus developing at the hexadecane-water interface, by combining proteomic and physiological approaches. The comparison of the dispersed cells' proteome with those of biofilm, logarithmic- and stationary-phase planktonic cells indicated that dispersed cells had lost most of the biofilm phenotype and expressed a specific proteome. Two proteins involved in cell envelope maturation, DsbA and CtpA, were exclusively detected in dispersed cells, suggesting a reshaping of the cell envelopes during biofilm dispersal. Furthermore, dispersed cells exhibited a higher affinity for hexadecane and initiated more rapidly biofilm formation on hexadecane than the reference planktonic cells. Interestingly, storage wax esters were rapidly degraded in dispersed cells, suggesting that their observed physiological properties may rely on reserve mobilization. Thus, by promoting oil surface colonization, cells emigrating from the biofilm could contribute to the success of marine hydrocarbonoclastic bacteria in polluted environments.  相似文献   

15.
Survival and growth of Legionella pneumophila in both biofilm and planktonic phases were determined with a two-stage model system. The model used filter-sterilized tap water as the sole source of nutrient to culture a naturally occurring mixed population of microorganisms including virulent L. pneumophila. At 20 degrees C, L. pneumophila accounted for a low proportion of biofilm flora on polybutylene and chlorinated polyvinyl chloride, but was absent from copper surfaces. The pathogen was most abundant on biofilms on plastics at 40 degrees C, where it accounted for up to 50% of the total biofilm flora. Copper surfaces were inhibitory to total biofouling and included only low numbers of L. pneumophila organisms. The pathogen was able to survive in biofilms on the surface of the plastic materials at 50 degrees C, but was absent from the copper surfaces at the same temperature. L. pneumophila could not be detected in the model system at 60 degrees C. In the presence of copper surfaces, biofilms forming on adjacent control glass surfaces were found to incorporate copper ions which subsequently inhibited colonization of their surfaces. This work suggests that the use of copper tubing in water systems may help to limit the colonization of water systems by L. pneumophila.  相似文献   

16.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

17.
This study examined whether Legionella pneumophila is able to thrive on heat-killed microbial cells (necrotrophy) present in biofilms or heat-treated water systems. Quantification by means of plate counting, real-time PCR, and flow cytometry demonstrated necrotrophic growth of L. pneumophila in water after 96 h, when at least 100 dead cells are available to one L. pneumophila cell. Compared to the starting concentration of L. pneumophila, the maximum observed necrotrophic growth was 1.89 log units for real-time PCR and 1.49 log units for plate counting. The average growth was 1.57 +/- 0.32 log units (n = 5) for real-time PCR and 1.14 +/- 0.35 log units (n = 5) for plate counting. Viability staining and flow cytometry showed that the fraction of living cells in the L. pneumophila population rose from the initial 54% to 82% after 96 h. Growth was measured on heat-killed Pseudomonas putida, Escherichia coli, Acanthamoeba castellanii, Saccharomyces boulardii, and a biofilm sample. Gram-positive organisms did not result in significant growth of L. pneumophila, probably due to their robust cell wall structure. Although necrotrophy showed lower growth yields compared to replication within protozoan hosts, these findings indicate that it may be of major importance in the environmental persistence of L. pneumophila. Techniques aimed at the elimination of protozoa or biofilm from water systems will not necessarily result in a subsequent removal of L. pneumophila unless the formation of dead microbial cells is minimized.  相似文献   

18.
19.
In the environment, many microorganisms coexist in communities competing for resources, and they are often associated as biofilms. The investigation of bacterial ecology and interactions may help to improve understanding of the ability of biofilms to persist. In this study, the behaviour of Bacillus cereus and Pseudomonas fluorescens in the planktonic and sessile states was compared. Planktonic tests were performed with single and dual species cultures in growth medium with and without supplemental FeCl3. B. cereus and P. fluorescens single cultures had equivalent growth behaviours. Also, when in co-culture under Fe-supplemented conditions, the bacteria coexisted and showed similar growth profiles. Under Fe limitation, 8 h after co-culture and over time, the number of viable B. cereus cells decreased compared with P. fluorescens. Spores were detected during the course of the experiment, but were not correlated with the decrease in the number of viable cells. This growth inhibitory effect was correlated with the release of metabolite molecules by P. fluorescens through Fe-dependent mechanisms. Biofilm studies were carried out with single and dual species using a continuous flow bioreactor rotating system with stainless steel (SS) substrata. Steady-state biofilms were exposed to a series of increasing shear stress forces. Analysis of the removal of dual species biofilms revealed that the outer layer was colonised mainly by B. cereus. This bacterium was able to grow in the outermost layers of the biofilm due to the inhibitory effect of P. fluorescens being decreased by the exposure of the cells to fresh culture medium. B. cereus also constituted the surface primary coloniser due to its favourable adhesion to SS. P. fluorescens was the main coloniser of the middle layers of the biofilm. Single and dual species biofilm removal data also revealed that B. cereus biofilms had the highest physical stability, followed by P. fluorescens biofilms. This study highlights the inadequacy of planktonic systems to mimic the behaviour of bacteria in biofilms and shows how the culturing system affects the action of antagonist metabolite molecules because dilution and consequent loss of activity occurred in continuously operating systems. Furthermore, the data demonstrate the biocontrol potential of P. fluorescens on the planktonic growth of B. cereus and the ability of the two species to coexist in a stratified biofilm structure.  相似文献   

20.
Nontypeable Haemophilus influenzae (NTHI) causes chronic infections that feature the formation of biofilm communities. NTHI variants within biofilms have on their surfaces lipooligosaccharides containing sialic acid (NeuAc) and phosphorylcholine (PCho). Our work showed that NeuAc promotes biofilm formation, but we observed no defect in the initial stages of biofilm formation for mutants lacking PCho. In this study, we asked if alterations in NTHI PCho content affect later stages of biofilm maturation. Biofilm communities were compared for NTHI 2019 and isogenic mutants that either lacked PCho (NTHI 2019 licD) or were constitutively locked in the PCho-positive phase (NTHI 2019 licON). Transformants expressing green fluorescent protein were cultured in continuous-flow biofilms and analyzed by confocal laser scanning microscopy. COMSTAT was used to quantify different biofilm parameters. PCho expression correlated significantly with increased biofilm thickness, surface coverage, and total biomass, as well as with a decrease in biofilm roughness. Comparable results were obtained by scanning electron microscopy. Analysis of thin sections of biofilms by transmission electron microscopy revealed shedding of outer membrane vesicles by NTHI bacteria within biofilms and staining of matrix material with ruthenium red in biofilms formed by NTHI 2019 licON. The biofilms of all three strains were comparable in viability, the presence of extracellular DNA, and the presence of sialylated moieties on or between bacteria. In vivo infection studies using the chinchilla model of otitis media showed a direct correlation between PCho expression and biofilm formation within the middle-ear chamber and an inverse relationship between PCho and persistence in the planktonic phase in middle-ear effusions. Collectively, these data show that PCho correlates with, and may promote, the maturation of NTHI biofilms. Further, this structure may be disadvantageous in the planktonic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号