首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

2.
Superficial cell desquamation followed by differentiation of newly exposed superficial cells induces regeneration of the urinary bladder epithelium, urothelium. In the present work, chitosan was evaluated as a new inducer of urothelial cell desquamation, in order to study the regeneration of mouse urothelial cells in vivo. Intravesical application of chitosan dispersion caused complete removal of only the superficial layer of cells within 20 min of treatment. Differentiation of the new superficial layer was followed by the appearance and distribution of three urothelial differentiation markers, tight junction protein ZO1, cytokeratin 20 and the maturation of the apical plasma membrane. The arrangement of ZO1 into continuous lines in individual cells of the intermediate layer was already found after 10 min of chitosan application, when desquamation had just started. The appearance of the apical membrane changed from microvillar to typically scalloped within 20 min of regeneration, while complete arrangement of the cytokeratin 20 network took 60 min. These findings provide a new perspective on the rate of the differentiation process in the urothelium and make chitosan a new and a very controllable tool for studies on urothelial regeneration.  相似文献   

3.
4.
The localisation of actin filaments was studied in rat urothelial cells during differentiation which accompanied regeneration after cell damage induced by cyclophosphamide (CP). By immunofluorescence it was established that actin filaments equally stained along the cell circumference in basal and intermediate cells, while basolateral cell membrane expression was found in terminally differentiated superficial cells. During regeneration, after CP treatment, simple urothelial hyperplasia developed with smaller cuboidal superficial cells, in which actin filaments were equally distributed under the apical and basolateral plasma membranes. As demonstrated by immunoelectron microscopy, the apical surface of these superficial cells was covered with microvilli containing bundles of actin filaments. Within 1 week, the urothelium reverted to its normal three-layer thickness. Superficial cells became larger and flattened and the unthickened apical plasma membrane matured into a thick asymmetric unit membrane. Concomitantly actin filaments disappeared from apical areas of superficial cells while remaining abundant at basolateral areas. Our results indicate that in the urothelium subcellular distribution of actin filaments can be considered as a marker of cell differentiation. Accepted: 16 September 1999  相似文献   

5.
The composition of the apical plasma membrane of bladder superficial urothelial cells is dramatically modified during cell differentiation, which is accompanied by the change in the dynamics of endocytosis. We studied the expression of urothelial differentiation-related proteins uroplakins and consequently the apical plasma membrane molecular composition in relation to the membrane-bound and fluid-phase endocytosis in bladder superficial urothelial cells. By using primary urothelial cultures in the environment without mechanical stimuli, we studied the constitutive endocytosis. Four new findings emerge from our study. First, in highly differentiated superficial urothelial cells with strong uroplakin expression, the endocytosis of fluid-phase endocytotic markers was 43% lower and the endocytosis of membrane-bound markers was 86% lower compared to partially differentiated cells with weak uroplakin expression. Second, superficial urothelial cells have 5–15-times lower endocytotic activity than MDCK cells. Third, in superficial urothelial cells the membrane-bound markers are delivered to lysosomes, while fluid-phase markers are seen only in early endocytotic compartments, suggesting their kiss-and-run recycling. Finally, we provide the first evidence that in highly differentiated cells the uroplakin-positive membrane regions are excluded from internalization, suggesting that uroplakins hinder endocytosis from the apical plasma membrane in superficial urothelial cells and thus maintain optimal permeability barrier function.  相似文献   

6.
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.  相似文献   

7.
Cytokeratins, uroplakins and the asymmetric unit membrane are biochemical and morphological markers of urothelial differentiation. The aim of our study was to follow the synthesis, subcellular distribution and supramolecular organization of differentiation markers, cytokeratins and uroplakins, during differentiation of umbrella cells of mouse bladder urothelium. Regenerating urothelium after destruction with cyclophosphamide was used to simulate de-novo differentiation of cells, which was followed from day 1 to day 14 after cyclophosphamide injection. Cytokeratin 7 and uroplakins co-localized in the subapical cytoplasm of superficial cells from the early stage of differentiation on. At early stages of superficial cell differentiation cytokeratin 7 was filamentary organized, and rare uroplakins were found on the membranes of relatively small cytoplasmic vesicles, which were grouped in clusters under the apical membrane. Later, cytokeratin 7 gradually reorganized into a continuous trajectorial network, and uroplakins became organized into plaques of asymmetric unit membrane, which formed fusiform vesicles. After insertion of fusiform vesicles into the apical plasma membrane, the surface acquired microridged appearance of umbrella cells. Cytokeratin 20 appeared as the last differentiation marker of umbrella cells. Cytokeratin 20 was incorporated into the pre-existing trajectorial cytokeratin network. These results indicate that differentiation of urothelial cells starts with the synthesis of differentiation-related proteins i.e., cytokeratins and uroplakins, and later with their specific organization. We consider that the umbrella cell has reached its final stage of differentiation when uroplakins form plaques of asymmetric unit membrane that are inserted into the apical plasma membrane and when cytokeratin 20 becomes included in a trajectorial cytokeratin network in the subapical area of cytoplasm.  相似文献   

8.
Using primary explant cultures of mouse bladder, the early response of the urothelium after superficial and full-thickness injuries was investigated. In such an in vitro wound healing model, explant surfaces with a mostly desquamated urothelial superficial layer represented superficial wounds, and the exposed lamina propria at the cut edges of the explants represented full-thickness wounds. The urothelial cell ultrastructure, the expression and subcellular distribution of the tight junctional protein occludin, and differentiation-related proteins CK 20, uroplakins, and actin were followed. Since singular terminally differentiated superficial cells remained on the urothelium after superficial injury (i.e., original superficial cells), we sought to determine their role during the urothelial wound-healing process. Ultrastructural and immunocytochemical studies have revealed that restored tight junctions are the earliest cellular event during the urothelial superficial and full-thickness wound-healing process. Occludin-containing tight junctions are developed before the new superficial cells are terminally differentiated. New insights into the urothelium wound-healing process were provided by demonstrating that the original superficial cells contribute to the urothelium wound healing by developing tight junctions with de novo differentiated superficial cells and by stretching, thus providing a large urothelial surface with asymmetric unit membrane plaques.  相似文献   

9.
The effect of moderate stress induced by prolonged illumination was analysed on urothelial cells of female mouse urinary bladders at ultrastructural and cytochemical levels. This study demonstrates that the urothelium responds to moderate stress with desquamation which involves two subsequent steps. The first step includes a local detachment of tight junctions and consequently the loss of the permeability barrier leading to expanded intercellular spaces among urothelial cells. During the second step, the disjunction of desmosomes accompanied by exocytosis of lysosomal enzymes (NADPase) in the intercellular space results in exfoliation of superficial cells. It is evident that moderate stress elicits an enhanced desquamation of only superficial cells by a subsequent dysfunction of first tight junctions and after that adherens-type junctions. A rapid restoration of the new tight junctions prevents a long-term malfunction of the blood-urine barrier.  相似文献   

10.
Urothelium synthesizes a group of integral membrane proteins called uroplakins, which form two-dimensional crystals (urothelial plaques) covering >90% of the apical urothelial surface. We show that the ablation of the mouse uroplakin III (UPIII) gene leads to overexpression, defective glycosylation, and abnormal targeting of uroplakin Ib, the presumed partner of UPIII. The UPIII-depleted urothelium features small plaques, becomes leaky, and has enlarged ureteral orifices resulting in the back flow of urine, hydronephrosis, and altered renal function indicators. Thus, UPIII is an integral subunit of the urothelial plaque and contributes to the permeability barrier function of the urothelium, and UPIII deficiency can lead to global anomalies in the urinary tract. The ablation of a single urothelial-specific gene can therefore cause primary vesicoureteral reflux (VUR), a hereditary disease affecting approximately 1% of pregnancies and representing a leading cause of renal failure in infants. The fact that VUR caused by UPIII deletion seems distinct from that caused by the deletion of angiotensin receptor II gene suggests the existence of VUR subtypes. Mutations in multiple gene, including some that are urothelial specific, may therefore cause different subtypes of primary reflux. Studies of VUR in animal models caused by well-defined genetic defects should lead to improved molecular classification, prenatal diagnosis, and therapy of this important hereditary problem.  相似文献   

11.
Postnatal restoration of the mouse urinary bladder urothelium   总被引:2,自引:2,他引:0  
Mouse urothelium is disrupted just before birth, followed by a postnatal restoration process which includes cell proliferation, death and differentiation. We assessed urothelial proliferation by the expression of proliferating cell nuclear antigen (PCNA), desquamation by electron microscopy, and apoptosis by TUNEL staining and urothelial differentiation by the expression of uroplakins and cytokeratin 20 (CK20) as well as the apical plasma membrane maturation. Our results indicated that urothelial proliferation was high from birth until about the 14th postnatal day. A majority of basal cells and even occasional superficial cells were PCNA positive during the first 5 postnatal days. Cell death occurred during the first 9 postnatal days. Between birth and day 5, single cells underwent apoptosis, whereas between days 6 and 9 cells mainly desquamated. CK20 and uroplakins were expressed in all superficial cells in postnatal urothelium. Their subcellular distribution characteristically changed in accordance with the progressive differentiation of superficial cells. During the urothelial postnatal development, proliferation activity slowly decreases to the proliferatively quiescent urothelium of the adult animal. Apoptosis is present in the first 9 postnatal days and within a few days of this period it appears simultaneously with desquamation. Superficial urothelial cells gradually differentiate, which is reflected in the changeable morphology of the apical plasma membrane.  相似文献   

12.
The apical surface of mammalian bladder urothelium is covered by large (500-1000 nm) two-dimensional (2D) crystals of hexagonally packed 16-nm uroplakin particles (urothelial plaques), which play a role in permeability barrier function and uropathogenic bacterial binding. How the uroplakin proteins are delivered to the luminal surface is unknown. We show here that myelin-and-lymphocyte protein (MAL), a 17-kDa tetraspan protein suggested to be important for the apical sorting of membrane proteins, is coexpressed with uroplakins in differentiated urothelial cell layers. MAL depletion in Madin-Darby canine kidney cells did not affect, however, the apical sorting of uroplakins, but it decreased the rate by which uroplakins were inserted into the apical surface. Moreover, MAL knockout in vivo led to the accumulation of fusiform vesicles in mouse urothelial superficial umbrella cells, whereas MAL transgenic overexpression in vivo led to enhanced exocytosis and compensatory endocytosis, resulting in the accumulation of the uroplakin-degrading multivesicular bodies. Finally, although MAL and uroplakins cofloat in detergent-resistant raft fractions, they are associated with distinct plaque and hinge membrane subdomains, respectively. These data suggest a model in which 1) MAL does not play a role in the apical sorting of uroplakins; 2) the propensity of uroplakins to polymerize forming 16-nm particles and later large 2D crystals that behave as detergent-resistant (giant) rafts may drive their apical targeting; 3) the exclusion of MAL from the expanding 2D crystals of uroplakins explains the selective association of MAL with the hinge areas in the uroplakin-delivering fusiform vesicles, as well as at the apical surface; and 4) the hinge-associated MAL may play a role in facilitating the incorporation of the exocytic uroplakin vesicles into the corresponding hinge areas of the urothelial apical surface.  相似文献   

13.
The purpose of this study was to establish an in vitro culture model that closely resembles whole mouse urothelial tissue. Primary explant cultures of mouse bladder were established on porous membrane supports and explant outgrowths were analysed for morphology and the presence of antigenic and ultrastructural markers associated with urothelial cytodifferentiation. When examined at the ultrastructural level, the cultured urothelium was polarized and organized as a multilayered epithelium. Differentiation was found to increase from the porous membrane towards the surface and from the explant towards the periphery of the culture. Scanning and transmission electron microscopical analysis of the most superficially-located cells revealed four successive differentiation stages: cells with microvilli, cells with ropy microridges, cells with rounded microridges, and highly-differentiated cells with asymmetric unit membrane (AUM) plaques forming rigid microridges and fusiform vesicles. The more highly-differentiated cells were numerous at the periphery of the culture, but rare close to the explant. Epithelial organization was stabilized by well developed cell junctions. Immunolabeling demonstrated that superficial urothelial cells in culture: (1) develop tight junctions, E-cadherin adherens junctions and abundant desmosomes and (2) express uroplakins and cytokeratin 20 (CK 20). Using a culture model of primary explant outgrowth we have shown that non-differentiated mouse urothelial cells growing on a porous membrane show a high level of de novo differentiation.  相似文献   

14.
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.  相似文献   

15.
The differentiation of urothelial cells is characterized by the synthesis of uroplakins and their assembly into the asymmetric unit membrane. The Golgi apparatus (GA) has been proposed to play a central role in asymmetric unit membrane formation. We have studied the distribution and organization of the GA in normal mouse urothelial cells and in the superficial urothelial cells that undergo differentiation following cyclophosphamide-induced regeneration, in correlation with urothelial cell differentiation. In normal urothelium, immature basal cells have a simple GA, which is small and distributed close to the nucleus. In intermediate cells, the GA starts to expand into the cytoplasm, whereas the GA of terminally differentiated umbrella cells is complex, being large and spread over the whole basal half of the cytoplasm. During early stages of regeneration after cyclophosphamide treatment, the GA of superficial cells is simple and no markers of urothelial differentiation (uroplakins or asymmetric unit membranes, discoidal or fusiform vesicles, apical surface covered with microvilli) are expressed. At a later stage, the GA expands and, in the final stage of regeneration, when cells express all markers of terminal urothelial differentiation, the GA become complex once again. Our results show that: (1) GA distribution and organization in urothelial cells is differentiation-dependent; (2) the GA matures from a simple form in partially differentiated cells to a complex form in terminally differentiated superficial cells; (3) major rearrangements of GA distribution and organization correlate with the beginning of asymmetric unit membrane production. Thus, GA maturation seems to be crucial for asymmetric unit membrane formation. The work was supported by the Ministry of Education and Sport, Government of Republic of Slovenia, Slovenia (grant no. 3311-04-831450).  相似文献   

16.
The formation of fusiform vesicles (FVs) is one of the most distinctive features in the urothelium of the urinary bladder. FVs represent compartments for intracellular transport of urothelial plaques, which modulate the surface area of the superficial urothelial (umbrella) cells during the distension-contraction cycle. We have analysed the three-dimensional (3D) structure of FVs and their organization in umbrella cells of mouse urinary bladders. Compared to chemical fixation, high pressure freezing gave a new insight into the ultrastructure of urothelial cells. Electron tomography on serial sections revealed that mature FVs had a shape of flattened discs, with a diameter of up to 1.2 μm. The lumen between the two opposing asymmetrically thickened membranes was very narrow, ranging from 5 nm to 10 nm. Freeze-fracturing and immunolabelling confirmed that FVs contain two opposing urothelial plaques connected by a hinge region that made an omega shaped curvature. In the central cytoplasm, 4-15 FVs were often organized into stacks. In the subapical cytoplasm, FVs were mainly organized as individual vesicles. Distension-contraction cycles did not affect the shape of mature FVs; however, their orientation changed from parallel in distended to perpendicular in contracted bladder with respect to the apical plasma membrane. In the intermediate cells, shorter and more dilated immature FVs were present. The salient outcome from this research is the first comprehensive, high resolution 3D view of the ultrastructure of FVs and how they are organized differently depending on their location in the cytoplasm of umbrella cells. The shape of mature FVs and their organization into tightly packed stacks makes them a perfect storage compartment, which transports large amounts of urothelial plaques while occupying a small volume of umbrella cell cytoplasm.  相似文献   

17.
When the urothelial barrier, i.e., the blood−urine barrier, is injured, rapid resealing of the injury is crucial for the normal functioning of the organism. In order to investigate the mechanisms required for rapid resealing of the barrier, we established in vitro models of hyperplastic and normoplastic urothelia. We found that hyperplastic urothelia achieve significantly higher transepithelial resistance (TER) than normoplastic urothelia. However, the expression of cell junctional (claudin-8, occludin, E-cadherin) and differentiation-related proteins (cytokeratin 20 and uroplakins) is weaker in hyperplastic urothelia. Further investigation of cell differentiation status at the ultrastructural level confirmed that superficial urothelial cells (UCs) in hyperplastic urothelial models achieve a lower differentiation stage than superficial UCs in normoplastic urothelial models. With the establishment of such in vitro models and the aid of TER measurements, flow cytometry, molecular and ultrastructural analysis, we here provide unequivocal evidence that the specific cell-cycle distribution and, consequently, the number of cell layers have a significant influence on the barrier function of urothelia. We demonstrate the importance of hyperplasia for the rapid restoration of the urothelial barrier and the maintenance of high TER until the UCs reach a highly differentiated stage and restoration of the urothelial barrier after injury is complete. The information that this approach provides is unique and we expect that further exploitation of hyperplastic and normoplastic urothelial models in future studies may advance our understanding of blood−urine barrier development and functionality.  相似文献   

18.
After drastic urothelial destruction around birth and around postnatal day 6, mouse urothelial renewal starts each time de novo. The differentiation of superficial cells during urothelial restoration was followed for the first time from embryonic day 15 to postnatal day 6 by the detection of differentiation markers: cytokeratins, uroplakins and apical membrane specialization. The differentiation markers of short-lived superficial cells were studied before and after urothelial destruction. Three distinctive types of superficial cells, typical for certain developmental period, were characterised: cells at low differentiation stage with microvilli and cilia, expressing CK7 and CK18, detected on embryonic day 15; cells at advanced differentiation stage with star-like arrangement of prominent membrane ridges, expressing CK7 and CK20, present between the two urothelial destruction events; highly differentiated cells with typically jagged apical surface, expressing CK7 and CK20, found twice during development. This cell type appears for the first time on embryonic day 18 as the terminal stage of embryonic differentiation. It was found again on postnatal day 6 as an initial stage of differentiation, leading toward terminally differentiated cells of the adult urothelium. Our work proves that apical membrane specialization is the most valuable differentiation marker of superficial cells.  相似文献   

19.
The apical plasma membrane of differentiated superficial urothelial cells is characterised by the presence of asymmetric unit membrane (AUM). Cyclophosphamide (CP) metabolites cause perforation of these thickened membranes. In this study, apical plasma membranes were examined after CP injection by electron microscopy. The immediate effect of the CP metabolites was observed as small round holes appearing, first in the asymmetric apical plasma membrane of terminally differentiated superficial cells, and later in the symmetric apical plasma membrane of exposed undifferentiated intermediate and basal cells. Exposed cells which remained undamaged, immediately underwent maturation of the symmetric apical plasma membrane. These results indicate that CP metabolites perforate the symmetric and asymmetric membranes of most urothelial cells.  相似文献   

20.
Formation of asymmetric unit membrane during urothelial differentiation   总被引:4,自引:0,他引:4  
Mammalian urothelium undergoes unique membrane specialization during terminal differentiation making numerous rigid-looking membrane plaques (0.3–0.5 m diameter) that cover the apical cell surface. The outer leaflet of these membrane plaques is almost twice as thick as the inner leaflet hence the name asymmetric unit membrane (AUM). Ultrastructural studies established that the outer leaflet of AUM is composed of 16 nm particles forming two dimensional crystals, and that each particle forms a twisted ribbon structure. We showed recently that highly purified bovine AUMs contain four major integral membrane proteins: uroplakins Ia (27 kD), Ib (28 kD), II (15 kD) and III (47 kD). Studies of the protease sensitivity of the different subdomains of uroplakins and other considerations suggest that UPIa and UPIb have 4 transmembrane domains, while UPII and UPIII have only one transmembrane domain. Chemical Crosslinking studies showed that UPIa and UPIb, which share 39% amino acid sequence, are topologically adjacent to UPII and UPIII, respectively, thus raising the possibility that there exist two biochemically distinct AUM particles, i.e., those containing UPIa/UPII vs. UPIb/UPIII. Bovine urothelial cells grown in the presence of 3T3 feeder cells undergo clonal growth forming stratified colonies capable of synthesizing and processing all known uroplakins. Transgenic mouse studies showed that a 3.6 kb 5-flanking sequence of mouse uroplakin II gene can drive the expression of bacterial LacZ gene to express in the urothelium. Further studies on the biosynthesis, assembly and targeting of uroplakins will offer unique opportunities for better understanding the structure and function of AUM as well as the biology of mammalian urothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号