首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal histochemical staining is critical to ensure excellent quality stained sections to enable light microscopic and histomorphometric image analysis. Verhoeff-van Gieson is the most widely used histochemical stain for the visualization of vascular elastic fibers. However, it is notoriously difficult to differentiate fine elastic fibers of small vasculature to enable histomorphometric image analysis, especially in organs such as the lung. A tissue fixation procedure of 10% neutral buffered formalin with subsequent fixation in 70% ethanol further compounds the problem of small vessel staining and identification. Therefore, a modified Verhoeff’s elastin stain was developed as a reliable method to optimally highlight the internal and external elastic laminae of small arteries (50-100 µm external diameter) and intra-acinar vessels (10-50 µm external diameter) in 3 µm thick lung tissue sections from models of pulmonary arterial hypertension. This modified Verhoeff’s elastin stain demonstrated well-defined staining of fine elastic fibers of pulmonary blood vessels enabling subsequent histomorphometric image analysis of vessel wall thickness in small arteries and intra-acinar vessels. In conclusion, modification of the standard Verhoeff-van Gieson histochemical stain is needed to visualize small caliber vessels’ elastic fibers especially in tissues fixed in 10% neutral buffered formalin followed by additional fixation in 70% ethanol.Key words: Histochemical stain, histomorphology, lung, Verhoeff-van Gieson, elastin  相似文献   

2.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration, sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections are counterstained with a variant of Van Gieson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff's elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

3.
A method for staining elastic fibers in formalin fixed, paraffin embedded sections is described. After deparaffinizing and dehydration. sections are stained for 30 minutes in a solution prepared by mixing equal parts of 1% gallein dissolved in ethylene glycol and absolute alcohol (1:4), and 1.16% aqueous ferric chloride in 1% hydrochloric acid. The sections are washed in water and then differentiated in 2% ferric chloride for 2 minutes. After washing in water, the sections am counterstained with a variant of Van Girson's picric acid-acid fuchsin for 1 minute. The results are similar to Verhoeff s elastic stain with elastic fibers staining black. An advantage to this staining procedure is that visually controlled differentiation is not necessary.  相似文献   

4.
Verhoeff (1908) recommended an iron-hematein formula containing Lugol's solution for demonstration of elastic tissue; sections are differentiated until desired staining patterns are obtained. Verhoeff's stain colored a variety of tissue structures and showed higher substantivity for myelin sheaths than for elastin. Addition of HCL or omission of Lugol's solution decreased or abolished coloration of pseudo-elastica and thus enhanced selectivity for elastin. Substitution of Fe++ for Fe+++ abolished dye binding by elastin. A review of chemical data indicated interaction of components of Lugol's solution with the dye. Hematein and Fe+++ form a variety of cationic, anionic and non-ionic chelates; the ratio of these compounds changes with time. Dye binding apparently occurs mainly via van der Waals forces and hydrogen bonds. Verhoeff's elastica stain is definitely not specific for elastin and is inferior to orcein and resorcin-fuchsin because of the required differentiation with its inherent bias to produce patterns which conform to expectations. However, Verhoeff's elastica stain is far superior to other metal-hematein technics for myelin sheaths. The combined Verhoeff-picro-Sirius Red F3BA stain can be performed in 30 min and does not require differentiation. It is therefore suggested to reclassify Verhoeff's elastica stain as a method for myelin sheaths.  相似文献   

5.
Summary Verhoeff (1908) recommended an iron-hematein formula containing Lugol's solution for demonstration of elastic tissue; sections are differentiated until desired staining patterns are obtained. Verhoeff's stain colored a variety of tissue structures and showed higher substantivity for myelin sheaths than for elastin. Addition of HCL or omission of Lugol's solution decreased or abolished coloration of pseudo-elastica and thus enhanced selectivity for elastin. Substitution of Fe++ for Fe+++ abolished dye binding by elastin.A review of chemical data indicated interaction of components of Lugol's solution with the dye. Hematein and Fe+++ form a variety of cationic, anionic and non-ionic chelates; the ratio of these compounds changes with time. Dye binding apparently occurs mainly via van der Waals forces and hydrogen bonds.Verhoeff's elastica stain is definitely not specific for elastin and is inferior to orcein and resorcin-fuchsin because of the required differentiation with its inherent bias to produce patterns which conform to expectations. However, Verhoeff's elastica stain is far superior to other metal-hematein technics for myelin sheaths. The combined Verhoeff-picro-Sirius Red F3BA stain can be performed in 30 min and does not require differentiation. It is therefore suggested to reclassify Verhoeff's elastica stain as a method for myelin sheaths.  相似文献   

6.
In conjunction with the immunoperoxidase and the immunoferritin methods, antielastin antibody was used to study the localization of elastin in untreated and elastase-treated elastic fibers of the nuchal ligament and the aorta of fetal and young adult sheep. In tissues not treated with elastase, the staining reaction for antielastin antibody was localized in the outer zones of the amorphous components and along the surfaces of the microfibrils ; the central zones of the amorphous components were unreactive. After mild elastase treatment, incompletely digested amorphous components showed staining both in their central and outer zones, and some of the microfibrils became unreactive. After extensive elastase treatment, small scattered amorphous components were still found in association with bundles of microfibrils. These components were stained diffusely by the antielastin antibody method but were not detectable by staining with uranyl acetate and lead citrate or with Kajikawa 's method for elastin; elastin was not detected on the surfaces of the microfibrils by any of the methods used. These findings were interpreted as indicating that the surfaces of the microfibrils are associated with small amounts of elastin, and that evenly stained amorphous components are composed of elastin, which is loosely arranged and allows the penetration of antielastin antibody. These observations support the concept that microfibrils serve an important role as a scaffold for elastin deposition in elastogenesis. Because of their high sensitivity, immunohistochemical methods for detecting elastin are useful to study partially degraded elastic fibers.  相似文献   

7.
THE FINE STRUCTURE OF ELASTIC FIBERS   总被引:23,自引:8,他引:15       下载免费PDF全文
The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.  相似文献   

8.
Reticular fibers are selectively stained in paraffin sections of formalin-fixed or Bouin's-fixed tissue as follows: 1% aqueous solution of gold chloride for 20 min, followed by a 10 min immersion in an aqueous solution containing 5% Na2CO3 and 0.5% KOH. The sections then are placed in a 5% aqueous solution of KI for 2 min. Counterstaining with a 0.25% aqueous solution of methylene blue chloride is optional. The reticular fibers stain dark pink; the collagen bundles are a light pink to straw color without the counterstain, or a light blue color when the methylene blue is used.  相似文献   

9.
Summary We show that fluorescence microscopy after staining of tissue sections with basic fuchsin (BF) can be used successfully for the demonstration of elastic fibres. Using double staining with BF and antibodies reacting with microfibrils of elastic fibres (anti-SAP) we showed that BF reacts with the elastin core of elastic fibres and the elastin poor terminal branches of the subepidermal elastic fibre system. Small amounts of bound BF were easily seen by fluorescence microscopy (FL) but not by ordinary light microscopy. Both frozen sections and sections of paraffin embedded tissues could be stained. The BF-FL staining procedure is simple to perform and, due to its selectivity, it may be useful for detecting elastic fibres in various tissues at the light microscopical level.  相似文献   

10.
K Pihlman  E Linder 《Histochemistry》1983,79(2):157-165
We show that fluorescence microscopy after staining of tissue sections with basic fuchsin (BF) can be used successfully for the demonstration of elastic fibres. Using double staining with BF and antibodies reacting with microfibrils of elastic fibres (anti-SAP) we showed that BF reacts with the elastin core of elastic fibres and the elastin poor terminal branches of the subepidermal elastic fibre system. Small amounts of bound BF were easily seen by fluorescence microscopy (FL) but not by ordinary light microscopy. Both frozen sections and sections of paraffin embedded tissues could be stained. The BF-FL staining procedure is simple to perform and, due to its selectivity, it may be useful for detecting elastic fibres in various tissues at the light microscopical level.  相似文献   

11.
Paraffin sections of formol-fixed tissues stained 4-18 hr in 70% alcohol containing 1% orcein and 1% of concentrated (12 N) HCl by volume yield the familiar purple brown elastin and red nuclei on a pink background. When sections so stained are transferred directly from the stain to 70% alcohol containing 0.02% ferric chloride (FeCl3·6 H2O) or 0.02% copper sulfate (CuSO4·5 H2O) for a 15 sec to 3 min period, elastin coloration is changed to black or reddish black and chromatin staining to reddish black. The procedure can be counterstained with picro-methyl blue to yield blue collagen and reticulum or with our flavianic acid, ferric chloride, acid fuchsin mixture to give deep yellow background and deep red collagen.  相似文献   

12.
We compared three different staining methods to determine if the dermal elastic fiber content of the HRS/Skh-1 hairless mouse could be accurately measured by color image analysis. Comparisons were made among Klig-man's modification of Luna's mast cell stain for elastin, Unna's orcein stain with or without potassium permanganate preoxidation, and Gomori's aldehyde fuchsin stain with potassium permanganate preoxidation. The color image analysis system could be used to identify and quantify murine dermal elastin fibers in sections stained by all three methods. Gomori's aldehyde fuchsin stain with preoxidation demonstrated twice the content of dermal elastic fibers demonstrated by either Kligman's modification of Luna's mast cell stain or Unna's orcein stain with or without preoxidation. Gomori's aldehyde fuchsin method with preoxidation should be considered the stain of choice for evaluating murine dermal elastic fiber content.  相似文献   

13.
Palladium toning is much less expensive than gold toning. Ten minutes in 0.05% potassium hexachloropalladate in 4 N hydrochloric add tones silver-impregnated reticular fibers as well as 3 min in 0.2% aqueous gold chloride does. Differences in toning of the background depend on the silver stain.  相似文献   

14.
Palladium toning is much less expensive than gold toning. Ten minutes in 0.05% potassium hexachloropalladate in 4 N hydrochloric acid tones silver-impregnated reticular fibers as well as 3 min in 0.2% aqueous gold chloride does. Differences in toning of the background depend on the silver stain.  相似文献   

15.
The application of Miller's dilute elastic stain followed sequentially by Gill's III hematoxylin and a fast green counterstain produced a reliable and consistent method for differentially staining elastic fibers, nuclei, muscle and collagen in glycol methacrylate tissue sections. Evaluation of different methods of fixation and conditions of staining on animal tissue sections showed that elastic fibers in both perfusion and immersion fixed tissues can be intensely stained. The stability of Miller's elastic stain offers the potential of a commercially available histological stain reagent for coarse and fine elastic fibers in glycol methacrylate tissue sections.  相似文献   

16.
The application of Miller's dilute elastic stain followed sequentially by Gill's III hematoxylin and a fast green counterstain produced a reliable and consistent method for differentially staining elastic fibers, nuclei, muscle and collagen in glycol methacrylate tissue sections. Evaluation of different methods of fixation and conditions of staining on animal tissue sections showed that elastic fibers in both perfusion and immersion fixed tissues can be intensely stained. The stability of Miller's elastic stain offers the potential of a commercially available histological stain reagent for coarse and fine elastic fibers in glycol methacrylate tissue sections.  相似文献   

17.
The formation of a mature elastic fiber is thought to proceed by the deposition of elastin on pre-existing microfibrils (10-12 nm in diameter). Immunohistochemical evidence has suggested that in developing tissues such as aorta and ligamentum nuchae, small amounts of elastin are associated with microfibrils but are not detected at the light microscopic and ultrastructural levels. Dermal tissue contains a complex elastic fiber system consisting of three types of fibers--oxytalan, elaunin, and elastic--which are believed to differ in their relative contents of microfibrils and elastin. According to ultrastructural analysis, oxytalan fibers contain only microfibrils, elaunin fibers contain small quantities of amorphous elastin, and elastic fibers are predominantly elastin. Using indirect immunofluorescence techniques, we demonstrate in this study that nonamorphous elastin is associated with the oxytalan fibers. Frozen sections of normal skin were incubated with antibodies directed against human aortic alpha elastin and against microfibrillar proteins isolated from cultured calf aortic smooth muscle cells. The antibodies to the microfibrillar proteins and elastin reacted strongly with the oxytalan fibers of the upper dermis. Oxytalan fibers therefore are composed of both microfibrils and small amounts of elastin. Elastin was demonstrated extracellularly in human skin fibroblasts in vitro by indirect immunofluorescence. The extracellular association of nonamorphous elastin and microfibrils on similar fibrils was visualized by immunoelectron microscopy. Treatment of these cultures with sodium dodecyl sulfate/mercaptoethanol (SDS/ME) solubilized tropoelastin and other proteins that reacted with the antibodies to the microfibrillar proteins. It was concluded that the association of the microfibrils with nonamorphous elastin in intact dermis and cultured human skin fibroblasts may represent the initial step in elastogenesis.  相似文献   

18.
A selective stain useful for the study of connective tissues is described. The stain demonstrates elastic and oxytalan fibers as well as fibrils in mucous connective tissues previously undescribed. Reticular fibers are not stained. The stain may be used on sections that have been fresh frozen or fixed in formalin or ethanol. Sections are deparaffinized, washed in absolute ethanol, oxidized in peracetic acid 30 min, washed in running water, stained in Taenzer-Unna orcein 15 min, 37°C, differentiated in 70% ethanol, washed in running water, stained in Lillie-Mayer alum hematoxylin 4 min, blued in running water, and counterstained 20 sec in a modified Halmi mixture of 100 ml distilled water, 0.2 gm light green SF, 1.0 gm orange G, 0.5 gm phosphotungstic acid and 1.0 ml glacial acetic acid. Sections are rinsed briefly in 0.2% acetic acid in 95% ethanol, dehydrated and mounted.  相似文献   

19.
Helix pomatia (Snail) lectin complexed with colloidal gold (HPL-gold) recognized binding sites on elastic fibers in plastic embedded sections of lung tissue from mice of several ages. Deposition of the lectin-gold particles was examined by electron microscopy. Structures such as the elastic laminae of pulmonary vessels and elastic fibers throughout the lung was specifically and intensely decorated by the HPL-gold complex and easily visualized. The binding of the HPL-gold particles was primarily to sites on the amorphous component of elastin, to the virtual exclusion of the microfibrillar elastin elements, collagen fibers and other components of the extracellular matrix. In addition, moderate age differences in the binding of HPL-gold to elastin were apparent. These observations appear to be the first demonstration of the presence, in the amorphous component of elastin, of glycoconjugates that are specifically recognized by HPL and suggest a method by which the involvement of glycoconjugates in lung elastogenesis could be explored.  相似文献   

20.
Lead aspartate is a new en bloc stain for electron microscopy. Its predictable staining depends on chelation that results from the interaction of the two stain components, lead nitrate and aspartic acid, which must be present in a specific ratio. Lead aspartate stain is 0.02 M in lead nitrate and 0.03 M in aspartic acid, adjusted to pH 5.5. Cells or tissues are stained at 60 degrees C for 30 to 60 min. Cells stained en bloc with lead aspartate closely resemble cells stained on grids by lead citrate, except that the former seldom have contamination. En bloc staining with lead aspartate bypasses the grid-staining step so that samples can be viewed and photographed immediately after they are thin-sectioned. The lower pH of the lead aspartate solution allows counterstaining of enzyme reaction products that dissolve in the highly alkaline lead citrate stain. Lead aspartate en bloc staining to enhance contrast should especially benefit studies of ultrastructure requiring a clean and predictably lead stain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号