首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843.  相似文献   

2.
Surface antigens of Rhizobium leguminosarum biovar viciae strain 248 were characterized by using polyclonal and monoclonal antibodies. With Western immunoblotting as the criterion, an antiserum raised against living whole cells recognized mainly flagellar antigens and the O-antigen-containing part of the lipopolysaccharide (LPS). Immunization of mice with a peptidoglycan-outer membrane complex yielded eight monoclonal antibodies, of which three reacted with LPS and five reacted with various sets of outer membrane protein antigens. The observation that individual monoclonal antibodies react with sets of related proteins is discussed. Studies of the influence of calcium deficiency and LPS alterations on surface antigenicity showed that in normally grown wild-type cells, the O-antigenic side chain of LPS blocks binding of an antibody to a deeper-lying antigen. This antigen is accessible to antibodies in cells grown under calcium limitation as well as in O-antigen-lacking mutant cells. Two of the antigen groups which can be distinguished in cell envelopes of free-living bacteria were depleted in cell envelopes of isolated bacteroids, indicating that the monoclonal antibodies could be useful tools for studying the differentiation process from free-living bacteria to bacteroids.  相似文献   

3.
Surface protein mutants of the invasive Salmonella species, S. choleraesuis, were generated using the transposon TnphoA. 626 alkaline phosphatase (PhoA+) fusion mutants were identified and screened for their ability to pass through (transcytose) polarized epithelial monolayers of Madin Darby canine kidney (MDCK) cells grown on membrane filters. Forty two mutants were unable to pass through this barrier. All of these transcytosis mutants were unable to adhere to or invade MDCK monolayers, yet these mutations were not in the genes encoding type 1 pili or mannose-resistant haemagglutination (MRHA). These transcytosis mutants could be grouped into six classes. Class 1 mutants had altered lipopolysaccharide (LPS) O side-chain structures while Class 2 mutants had defects in their LPS core. Mutants belonging to Classes 5 and 6 did not decrease the transepithelial electrical resistance of polarized MDCK cell monolayers, in contrast to the parental strain and the other mutants (Classes 1, 2, 3 and 4). Mutants belonging to Class 1 were less virulent in mice, while Class 2 (defective core) and Classes 4 and 5 (normal LPS) mutant strains were avirulent in mice. Mutants from Classes 3 and 6 were as virulent in mice as S. choleraesuis. These results suggest that the ability to pass through epithelial barriers may be an important virulence characteristic of Salmonella. These data indicate that bacterial adherence, internalization and monolayer transcytosis are closely linked events. It was also demonstrated that a mutant with decreased rates of intracellular replication still passed through the monolayer at rates similar to wild-type S. choleraesuis.  相似文献   

4.
In a previous report, we described the selection and partial characterization of three distinct classes of methotrexate (Mtx)-resistant Chinese hamster ovary cells (CHO) (1). Class I cells contained a structural alteration in dihydrofolate reductase. Class II cells showed a alteration affecting the permeability of the drug. Class III cells, selected from class I cells, had an increased activity of the altered enzyme. In the work described here, the sensitivity of these lines to the diaminopyrimidines has been investigated. Class I cells are as sensitive, class II cells are 5- to 10-fold more sensitive, and class III cells are 10- to 30-fold more resistant than wild-type cells. The increased sensitivity of the class II cells provided an opportunity to select for revertants of these mutants and such phentotypic wild-type revertant cells have been selected using one diaminopyrimidine, pyrimethamine. Such cells have drug sensitivities and permeability characteristics similar to wild-type cells. A second class has been identified which has wild-type drug sensitivities to the diaminopyrimidines but Mtx class II resistance to Mtx, and drug permeabilities characteristic of Mtx-resistant class II cells.  相似文献   

5.
In a wild-type strain of Saccharomyces cerevisiae the tryptophan analogue dl-5-methyl-tryptophan (5MT) causes only a slight reduction of the growth rate. Uptake experiments indicate that the limited inhibition is partly due to low levels of 5MT inside the cell. On the other hand, this low concentration of 5MT leads to an increase in the activity of the tryptophan-biosynthetic enzymes. Evidence is presented that suggests that 5MT acts primarily through feedback inhibition of anthranilate synthase, the first enzyme of the pathway. A number of 5MT-sensitive mutants have been isolated, characterized, and assigned to one of the following three classes: class I, strains with altered activity and/or feedback sensitivity of anthranilate synthase; class II, strains with elevated uptake of 5MT; class III, mutants with altered regulation of the tryptophan-biosynthetic enzymes, which do not exhibit increases in activity in the presence of 5MT. This failure to exhibit increased enzyme activities in mutants of class III can also be observed after tryptophan starvation. Two mutants of class III show high sensitivity towards 3-amino-1,2,4-triazole. They can not exhibit derepression of some histidine- and arginine-biosynthetic enzymes under conditions that lead to an increase in these same enzymes in the wild-type strain.  相似文献   

6.
Eight symbiotic mutants defective in lipopolysaccharide (LPS) synthesis were isolated from Rhizobium leguminosarum biovar phaseoli CFN42. These eight strains elicited small white nodules lacking infected cells when inoculated onto bean plants. The mutants had undetectable or greatly diminished amounts of the complete LPS (LPS I), whereas amounts of an LPS lacking the O antigen (LPS II) greatly increased. Apparent LPS bands that migrated between LPS I and LPS II on sodium dodecyl sulfate-polyacrylamide gels were detected in extracts of some of the mutants. The mutant strains were complemented to wild-type LPS I content and antigenicity by DNA from a cosmid library of the wild-type genome. Most of the mutations were clustered in two genetic regions; one mutation was located in a third region. Strains complemented by DNA from two of these regions produced healthy nitrogen-fixing nodules. Strains complemented to wild-type LPS content by the other genetic region induced nodules that exhibited little or no nitrogenase activity, although nodule development was obviously enhanced by the presence of this DNA. The results support the idea that complete LPS structures, in normal amounts, are necessary for infection thread development in bean plants.  相似文献   

7.
8.
When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395 alpha 395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395 alpha 395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps(+) strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions.  相似文献   

9.
Differential gene expression in biofilm cells suggests that adding the derepressed conjugative plasmid R1drd19 increases biofilm formation by affecting genes related to envelope stress (rseA and cpxAR), biofilm formation (bssR and cstA), energy production (glpDFK), acid resistance (gadABCEX and hdeABD), and cell motility (csgBEFG, yehCD, yadC, and yfcV); genes encoding outer membrane proteins (ompACF), phage shock proteins (pspABCDE), and cold shock proteins (cspACDEG); and phage-related genes. To investigate the link between the identified genes and biofilm formation upon the addition of R1drd19, 40 isogenic mutants were classified according to their different biofilm formation phenotypes. Cells with class I mutations (those in rseA, bssR, cpxA, and ompA) exhibited no difference from the wild-type strain in biofilm formation and no increase in biofilm formation upon the addition of R1drd19. Cells with class II mutations (those in gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) displayed increased biofilm formation compared to the wild-type strain but decreased biofilm formation upon the addition of R1drd19. Class III mutants showed increased biofilm formation compared to the wild-type strain and increased biofilm formation upon the addition of R1drd19. Cells with class IV mutations displayed increased biofilm formation compared to the wild-type strain but little difference upon the addition of R1drd19, and class V mutants exhibited no difference from the wild-type strain but increased biofilm formation upon the addition of R1drd19. Therefore, proteins encoded by the genes corresponding to the class I mutant phenotype are involved in R1drd19-promoted biofilm formation, primarily through their impact on cell motility. We hypothesize that the pili formed upon the addition of the conjugative plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as well as the other envelope stress response system, RseA-sigma(E), both of which, along with BssR, play a key role in bacterial biofilm formation.  相似文献   

10.
Mutations in Escherichia coli that effect sensitivity to oxygen   总被引:7,自引:2,他引:5       下载免费PDF全文
Fifteen oxygen-sensitive (Oxys) mutants of Escherichia coli were isolated after exposure to UV light. The mutants did not form macroscopic colonies when plated aerobically. They did form macroscopic colonies anaerobically. Oxygen, introduced during log phase, inhibited the growth of liquid cultures. The degree of inhibition was used to separate the mutants into three classes. Class I mutants did not grow after exposure to oxygen. Class II mutants were able to grow, but at a reduced rate and to a reduced final titer, when compared with the wild-type parent. Class III mutants formed filaments in response to oxygen. Genetic experiments indicated that the mutations map to six different chromosomal regions. The results of enzymatic assays indicated that 7 of the 10 class I mutants have low levels of catalase, peroxidase, superoxide dismutase, and respiratory enzymes when compared with the wild-type parent. Mutations in five of the seven class I mutants which have the low enzyme activities mapped within the region 8 to 13.5 min. P1 transduction data indicated that mutations in three of these five mutants, Oxys-6, Oxys-14, and Oxys-17, mapped to 8.4 min. The correlation of low enzyme levels and mapping data suggests that a single gene may regulate several enzymes in response to oxygen. The remaining three class I mutants had wild-type levels of catalase, peroxidase, and superoxide dismutase, but decreased respiratory activity. The class II and III mutants had enzyme activities similar to those of the wild-type parent. Our results demonstrate that mutations in at least six genes can be expressed as oxygen sensitivity. Some of these genes may be involved in respiration or cell division or may regulate the expression of several enzymes.  相似文献   

11.
Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was determined by cloning the DNA containing the transposon insertion and using the cloned DNA to replace the wild-type DNA in the parent bacterial strain by marker exchange. The transposon insertions in the three mutants mapped at three widely separated locations on the bacterial chromosome. The effects of the mutations on various steps in tumor formation were examined. All three mutants showed no alteration in binding to carrot cells. However, none of the mutants showed any induction of vir genes by acetosyringone under conditions in which the parent strain showed vir gene induction. When the mutant bacteria were examined for changes in surface components, it was found that all three of the mutants showed a similar alteration in lipopolysaccharide (LPS). LPS from the mutants was larger in size and more heavily saccharide substituted than LPS from the parent strain. Two of the mutants showed no detectable alteration in outer membrane and periplasmic space proteins. The third mutant, Ivr-225, was missing a 79-kDa surface peptide. The reason(s) for the failure of vir gene induction in these mutants and its relationship, if any, to the observed alteration in LPS are unknown.  相似文献   

12.
We present evidence that biological properties of cell membranes are altered in dnaA and seqA mutants of Escherichia coli relative to wild-type bacteria. We found that bacteriophage lambda forms extremely large plaques on the dnaA seqA double mutants. On the single mutants, dnaA and seqA, the plaques are also bigger than those formed on the wild-type host. However, no significant differences in intracellular phage lambda development were observed between wild-type and mutant hosts, indicating that differences in burst size do not account for the observed differences in plaque size. On the other hand, more efficient release of the phage lytic proteins and/or higher sensitivity of the cell membranes to these proteins may result in more efficient cell lysis. We found that the efficiency of adsorption of bacteriophage lambda to the dnaA seqA mutant cells is decreased at 0 degrees C , but not at 30 degrees C, relative to the wild-type strain. A considerable increase in the permeability of membranes of the mutant cells for beta-galactosidase is demonstrated. The dnaA and seqA mutants are more sensitive to ethanol (an organic solvent) than wild-type bacteria, and the seqA strain and the double mutant dnaA seqA are very sensitive to deoxycholate (a detergent). We conclude that lesions in the genes dnaA and seqA result in alterations in cell membranes, such that the permeability and possibly also other properties of the membranes are significantly altered relative to wild-type bacteria.  相似文献   

13.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A procedure has been developed for isolating mutants which are defective with respect to nicotinamide adenine dinucleotide (NAD) metabolism. It is based on the well known V-factor requirement of Haemophilus parainfluenzae. This procedure was used to isolate a series of mutants from Escherichia coli. The pyridine metabolism of wild-type and mutant E. coli cells falls in one of four distinct classes. Class A includes wild-type E. coli and represents strains that are normal with respect to pyridine metabolism. Class B mutants have altered internal pools of NAD. The intracellular NAD concentration of different class B mutants varies over a 10-fold range. Class C mutants excrete pyridine mononucleotides, and class D mutants excrete NAD. The production of pyridine nucleotides by class C and D mutants exceeds that of wild-type E. coli by a factor of at least ten. The mutant strains generally have normal generation times and achieve normal cell densities in minimal medium.  相似文献   

15.
16.
9-beta-D-Arabinosyladenine (araA)-resistant mutants of baby hamster kidney (BHK) cells can be classified into 3 classes. In order to gain a better understanding of the mechanism(s) of resistance and the biochemical basis of cytotoxicity of various purine nucleosides, cell hybrids of the mutant and wild-type cells were made and analyzed. The class I araA-resistant, adenosine-kinase-deficient (AK-) allele was shown to be recessive to the wild-type araA-sensitive (AK+) gene. The class II mutant allele, which encodes an altered ribonucleoside diphosphate reductase, was shown to be codominant. The class III mutants show multiple phenotypes, araAr/dAdor/adenosine sensitive (Ados) and alteration in AK activity. The araA- and dAdo-resistant alleles of araS10d, ara-16c, and ara-19a in class III mutant/wild-type hybrid cells are all recessive to the wild-type allele, consistent with a common mechanism of resistance. In contrast the Ados allele of ara-S10d is dominant while those of ara-16c and ara-19a are recessive. The difference may be a reflection of two distinct mechanisms of enhanced Ado sensitivity or, alternatively, it suggests that the sensitivity of the hybrids to Ado is highly dependent on the level of AK activity.  相似文献   

17.
Summary In the simple eucaryote Saccharomyces cerevisiae there are at least three phenotypically distinct classes of mutants sensitive to inactivation by radiations and alkylating agents: class I mutants are sensitive to ultraviolet light and nitrogen mustard (HN2); class II mutants are sensitive to X-rays and methylmethane sulphonate (MMS); and class III mutants are sensitive to all four of these agents. We have constructed doubly mutant strains of types (I, I), (I, II), (I, III), and (II, III) and have measured their sensitivity to UV, X-rays, HN2 and MMS in order to characterize the interactions of the various mutant gene pairs. Class (I, III) double mutants proved to be supersensitive to UV and HN2 and class (II, III) double mutants proved to be supersensitive to X-rays and MMS. All other double mutants showed little or no enhancement of sensitivity over their most sensitive single mutant parents. Mutants of class I are known to be defective in excision repair and our results are consistent with the idea that there exist at least two additional pathways for dark repair in yeast, one capable of repairing X-ray and MMS damage to DNA, and another, possibly analogous to post-replication repair in bacteria, that competes with the other two for damaged regions in DNA.  相似文献   

18.
Mutations from moderate (class I) to high (class III) ampicillin resistance in a male and a female strain of Escherichia coli K-12 have been found to be accompanied by surface alterations, first demonstrated as hindrance in the formation of mating pairs. These changes have now been studied with the ribonucleic acid phage MS2, and especially with the "female-specific" phage phiW. Several class III mutations in male and female strains were found to make the cells susceptible to phage phiW and to reduce their abilities to form mating pairs. Spontaneous phage phiW-resistant mutants isolated from class III strains were found also to have acquired changes in ampicillin resistance and ability to form mating pairs. One mutant had reverted to parental class I type in all three properties. Lipopolysaccharides (LPS) prepared from phiW-sensitive class III strains inactivated the phage in vitro, whereas LPS from phage-resistant strains had no effect. Carbohydrate analyses of LPS preparations showed that two class III mutants, compared to their parental strains, had lost significant parts of the rhamnose, galactose, and glucose from the LPS. One of the phage phiW-resistant mutants showed a partial restoration of its carbohydrate composition. Other phiW-resistant mutants showed, instead, further losses of carbohydrates in their LPS. It is suggested that genes exist which simultaneously mediate a female-specific mating site, ampicillin resistance, and the receptors for phage phiW.  相似文献   

19.
Mutants of simian virus 40 (SV40) with base substitutions at or near the origin of replication of the viral genome have been constructed by bisulfite mutagenesis at the BglI restriction site of SV40 DNA, followed by transfection of cells with the BglI-resistant (BglIr) DNA so generated. Based on plaque morphology at different temperatures, the resulting BglIr mutants could be classified into four-groups. Class I mutants (designated ar for “altered restriction”) were indistinguishable from wild-type SV40; class II mutants (designated shp for “sharp plaque”) produced small, sharp-edged plaques; class III mutants (designated sp for “small plaque”) produced small plaques at 32 °C, 37 °C and 40 °C; and class IV mutants (designated cs for “cold sensitive”) produced small plaques at 32 °C and wild-type plaques at 37 °C and 40 °C. That the altered plaque morphology of sp and cs mutants was related to mutation at the BglI restriction site was demonstrated by co-reversion to wild-type of the plaque phenotype and BglI sensitivity. The nucleotide sequence around the original BglI site was determined in the DNA from one mutant of each class. In each case a different base-pair substitution was found, at a site outside sequences coding for SV40 proteins. When rates of replication of mutant DNAs were measured during productive infection, ar mutant DNA was synthesized at a rate comparable to that of wild-type SV40 DNA, shp mutant DNA was made at a rate exceeding that of wild-type, sp mutant DNA was synthesized at a lower rate than that of wild type. and cs mutant DNA synthesis was reduced at 32 °C, but about the same as the wild-type rate at 40 °C. These patterns of mutant DNA synthesis were unaltered in cells co-infected with mutant and wild-type virus, i.e. the defects in DNA synthesis were not trans-complementable. We conclude that the defective mutants have single base-pair changes in a cis element that determines the rate of viral DNA replication, presumably within the origin signal itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号