首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The novel 4,6-di-O-acetyl-2,3-dideoxy-D-erythro-hex-2-enopyranosyl sulfamide, which exhibits selectivity for inhibiting isoform IX of carbonic anhydrase as overexpressed in many tumors, has been investigated from a combined theoretical and spectroscopic point of view. The conformational study of the compound shows that the α-anomeric form is more stable than the β-anomeric form from a thermodynamic point of view after including solvent effects. This fact suggests that the synthesis reaction could take place mainly under thermodynamic control as the main experimental product is the α-anomeric form of the sulfamide. Calculated α/β ratio is about 95:5, in excellent agreement with experimental data. Optimized geometries of the α-anomeric form agree quite well with crystallographic data. The inclusion of a solvent has negligible effects on the conformations. A detailed analysis of some geometric parameters shed light into the conformational behavior of the sulfamide in terms of both exo- and endo-anomeric effects and antiperiplanar relationships. Natural bond orbital calculations confirm those findings. Several intramolecular hydrogen bonds, characterized through the Atoms-in-Molecules theory, were found in the stable conformers. They, however, seem to play no relevant role in determining the relative stability of α conformers with respect to the β ones. Calculated (1)H and (13)C NMR chemical shifts support previous findings concerning configuration and conformation assignments of the title sulfamide. The IR spectrum of the compound is recorded and reported for the first time and the assignment of some of the most important bands is accomplished with the aid of calculated harmonic vibrational frequencies.  相似文献   

2.
Abstract

Structural properties of the fluorescent α-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with α-εedA / dG pairing is most thermodynamically stable while the α-edA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of α-edA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the α-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

3.
Abstract

New chiral sulfahydantoins have been synthesized via alkaline cyclisation, starting from symetric sulfamide derivatives of natural amino acids. Tetraacetyl ribofuranose was used in the glycosylation step in order to obtain the pseudonucleosides in β-anomeric configuration.  相似文献   

4.
This is an investigation of technetium ligands and their complexes with [TcO]3+ using ab initio population analysis and molecular mechanics conformational searching methods. Calculated atomic electronic populations on the technetium atom in complexes with a number of ligands gauge the degree of covalent bonding between technetium and these ligands. Here a reduction in the positive charge on the [TcO]3+ moiety by complexation with a given ligand is correlated with covalent bonding. Our ab initio results suggest that ligands with more sulphur atoms have better covalent bonding to technetium than do other ligands. A conformational analysis of the uncomplexed ligands indicates that conformational reorganization before complexation correlates inversely with stable complex formation. This conformational analysis shows that ligands with ethylene carbonyl bridges have low energy conformations closer to the final complexation geometries than do ligands with ethylene, propylene or propylene carbonyl bridges. The presence of these low energy conformations facilitates a faster complexation of the ethylene carbonyl [TcO]3+ moiety. This result produces a kinetic explaination why ethylene carbonyl bridged ligands form stable complexes while many other ligands do not [1]. The conclusion is that kinetic and thermodynamic considerations play a role in stable complex formation between these ligands and technetium.  相似文献   

5.
The anomeric effect of 2-substituted 1,4-dioxane derivatives was calculated and compared with the values for substituted cyclohexane. The bond lengths, bond angles, torsion angles, and relative energies of axial and equatorial conformers of 2-substituted 1,4-dioxanes were calculated by the second-order Møller–Plesset (MP2), density functional theory (DFT/B3LYP), and Hartree–Fock (HF) methods using 6-31G basis set. The energy differences between the axial and equatorial conformers, endo and exo-anomeric effects, repulsive non-bond and H-bonding interactions were investigated. A linear free energy relationship (LFER) between calculated (MP2/6-31G) anomeric effect and inductive substituent constants (σI) was obtained for 2-substituted-1,4-dioxanes (slope = 6.19 and r2 = 0.967). The calculated energy differences indicate lower equatorial orientation for 2-substituted-1,4-dioxanes compared to the 2-substituted-tetrahydropyrans. The contribution of resonance, hyperconjugation, inductive, steric, hydrogen bonding, electrostatic interaction, and level of theory influences the anomeric effect.  相似文献   

6.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

7.
It has been previously reported that the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) can form stable radical adducts with superoxide radical. However, the presence of diastereomers of DEPMPO radical adducts and the appearance of superhyperfine structure complicates the interpretation of the ESR spectra. It has been suggested that the superhyperfine structure in the ESR spectrum of DEPMPO/?OOH is a result of conformational exchange between conformers. The analysis of the temperature dependence of the ESR spectrum of DEPMPO/?OOH and of its structural analog DMPO/?OOH have demonstrated that both ESR spectra contain exchange effects resulting from conversion between two conformers. Computer simulation calculates a conformer lifetime on the order of 0.1?μs for DMPO/?OOH at room temperature. However, temperature dependence of the ESR spectrum of DEPMPO/?OOH suggests that superhyperfine structure does not depend on the conformational exchange. We have now found that the six-line ESR spectrum with superhyperfine structure should be assigned to a DEPMPO-superoxide-derived decomposition product. Therefore, ESR spectra previously assigned to DEPMPO/?OOH contain not only the two diastereomers of DEPMPO/?OOH but also the decomposition product, and these spectra should be simulated as a combination of four species: two conformers of the first diastereomer, one conformer of the second diastereomer and the superoxide-derived decomposition product. The presence of four species has been supported by the temperature dependence of the ESR spectra, nucleophilic synthesis of radical adducts, and isotopic substitution experiments. It is clear that to correctly interpret DEPMPO spin trapping of superoxide radicals, one must carefully consider formation of secondary radical adducts.  相似文献   

8.
We extend a recently proposed mixed quantum/classical method for computing the vibronic electronic circular dichroism (ECD) spectrum of molecules with different conformers, to cases where more than one hindered rotation is present. The method generalizes the standard procedure, based on the simple Boltzmann average of the vibronic spectra of the stable conformers, and includes the contribution of structures that sample all the accessible conformational space. It is applied to the simulation of the ECD spectrum of (S)‐2,2,2‐trifluoroanthrylethanol, a molecule with easily interconvertible conformers, whose spectrum exhibits a pattern of alternating positive and negative vibronic peaks. Results are in very good agreement with experiment and show that spectra averaged over all the sampled conformational space can deviate significantly from the simple average of the contributions of the stable conformers. The present mixed quantum/classical method is able to capture the effect of the nonlinear dependence of the rotatory strength on the molecular structure and of the anharmonic couplings among the modes responsible for molecular flexibility. Despite its computational cost, the procedure is still affordable and promises to be useful in all cases where the ECD shape arises from a subtle balance between vibronic effects and conformational variety.  相似文献   

9.
Abstract

This paper focuses on the comprehensive conformational analysis of the quercetin molecule with a broad range of the therapeutic and biological actions. All possible conformers of these molecule, corresponding to the local minima on the potential energy hypersurface, have been obtained by the sequential rotation of its five hydroxyl groups and also by the rotation of its (A?+?C) and B rings relatively each other. Altogether, it was established 48 stable conformers, among which 24 conformers possess planar structure and 24 conformers – nonplanar structure. Their structural, symmetrical, energetical and polar characteristics have been investigated in details. Quantum-mechanical calculations indicate that conformers of the quercetin molecule are polar structures with a dipole moment, which varies within the range from 0.35 to 9.87 Debay for different conformers. Relative Gibbs free energies of these conformers are located within the range from 0.0 to 25.3?kcal·mol?1 in vacuum under normal conditions. Impact of the continuum with ε?=?4 leads to the decreasing of the Gibbs free energies (–0.19–18.15?kcal·mol?1) and increasing of the dipole moment (0.57–12.48?D). It was shown that conformers of the quercetin molecule differ from each other by the intramolecular specific contacts (two or three), stabilizing all possible conformers of the molecule – H-bonds (both classical ОН…О and so-called unusual С′Н…О and ОН…С′) and attractive van-der-Waals contacts О…О. Obtained conformational analysis for the quercetin molecule enables to provide deeper understanding of the ‘structure-function’ relationship and also to suggest its mechanisms of the therapeutic and biological actions.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
4,6-O-Methylidene and 4,6-O-neopentylidene derivatives of 1,5-anhydro-2,3-dideoxy-5-thio-dl-thero-hex-2-enitol having the C-inside form were found to be thermodynamically more stable than the corresponding O-inside conformers. Thermodynamic stabilities, as well as the conformation of sulfoxide and sulfone derivatives of the 4,6-O-neopentylidene compound were examined by experiment and ab initio MO and DFT calculations. These thermodynamic stabilities, and the most stable conformations determined by NMR data, were corroborated by calculations.  相似文献   

11.
Conformational studies of enkephalins are hampered by their high flexibility which leads to mixtures of quasi-isoenergetic conformers in solution and makes NOEs very difficult to detect in NMR spectra. In order to improve the quality of the NMR data, Leu–enkephalin was synthesized with 15N-labelled uniformly on all amide nitrogens and examined in a viscous solvent medium at low temperature. HMQC NOESY spectra of the labelled Leu–enkephalin in a DMSOd6/H2O mixture at 275 K do show numerous NOEs, but these are not consistent with a single conformer and are only sufficient to describe the conformational state as a mixture of several conformers. Here a different approach to the structure–activity relationships of enkephalins is presented: it is possible to analyse the NMR data in terms of limiting canonical structures (i.e. β- and γ-turns) and finally to select only those consistent with the requirements of δ selective agonists and antagonists. This strategy results in the prediction of a family of conformers that may be useful in the design of new δ selective opioid peptides. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
αD -N-acetyl neuraminic acid (Neu5Ac, sialic acid) is a commonly occurring carbohydrate residue in various cell surface glycolipids and glycoproteins. This residue is linked terminally or internally to Gal residues via an α(2 → 3) or α(2 → 6) linkage. In the cell surface receptor, sialyl-LewisX, a terminal α(2 → 3) linkage is present. Previous studies from our laboratory have shown that in solution LewisX adopts a relatively rigid structure. In order to model the Neu5Ac residue, vacuum molecular dynamics of this monosaccharide were compared with simulations that explicitly include solvent water. The dynamical average of the monosaccharide conformation obtained from the two simulations was similar. Vacuum calculations for the disaccharide Neu5Ac α(2 → 3) Gal β-O-methyl show that a number of low energy minima are accessible to this disaccharide. Molecular dynamics simulations starting from the low energy minima show conformational transitions with a time scale of 10–50 ps among several of the minima while large barriers between other minima prevent transitions on the time scale studied. Simulations of this disaccharide in the presence of solvent show fewer conformational transitions, illustrating a dampening effect of the solvent that has been observed in some other studies. Our results are most consistent with an equilibrium among multiple conformations for the Neu5Ac α(2 → 3) Gal β linkage. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Igor Tvaro&#x;ka 《Biopolymers》1984,23(10):1951-1960
The conformational equilibria of five β-cellobiose conformers have been studied theoretically in 10 solvents. The stability of the conformers in dilute solution has been compared by using the method that has already been tested for 2-methoxytetrahydropyran, β-maltose, and D -glucose. The solvation energy consists of electrostatic, dispersion, and cavity terms which have been determined from the properties of the solute calculated by the PCILO quantum-chemical method and physicochemical properties of the solvents. The calculated abundance of conformers depends on the solvent (e.g., in dioxane C1:C2:C3:C4:C5 = 60.0:34.1:2.9:2.0:1.0; in dimethylsulfoxide, 75.5:22.1:1.8:0.5:0.2; and in water, 82.2:16.2:1.3:0.2:0.1). The results obtained indicate that the preponderant conformer in the aqueous solution is similar to the one adopted by β-cellobiose in the crystalline form. The role of individual contributions to the solvation energy have been analyzed. Based on the determined abundance of conformers, averaged residual optical activity and nmr parameters have been calculated and compared with observable properties. The marked differences observed between solvent-induced conformational changes for β-cellobiose and β-maltose have been discussed from the viewpoint of the solubility of the cellulose.  相似文献   

14.
A comparative study has been made of the configurational effects on the conformational properties of α- and β-anomers of purine and pyrimidine nucleoside 3′,5′,-cyclic monophosphates and their 2′-arabino epimers. Correlation between orientation of the base and the 2′-hydroxyl group have been studied theoretically using the PCILO (Perturbative Configuration Interaction using Localized Orbitals) method. The effect of change in ribose puckering on the base-hydroxyl interaction has also been studied. The result show that steric repulsions and stabilizing effects of intramolecular hydrogen bonding between the base and the 2′-hydroxyl (OH) group are of major importance in determining configurations of α-anomers and 2′-arabino-β-epimers. For example, hydrogen bonding between the 2′-hydroxyl group and polar centers on the base ring is clearly implicated as a determinant of syn-anti preferences of the purine (adenine) or pyrimidine (uracil) bases in α-nucleoside 3′,5′-cyclic monophosphates. Moreover, barrier heights for interconversion between conformers are sensitive to ribose pucker and 2′-OH orientations. The result clearly show that a change in ribose-ring pucker plays an essential role in relieving repulsive interaction between the base and the 2′-hydroxyl group. Thus a C2′-exo-C3′-endo (2T3) pucker is favored for α-anomers in contrast with the C4′-exo-C3′-endo (4T3) from found in β-compounds.  相似文献   

15.
The structural and functional properties of active site mutants of cytochrome c oxidase from Paracoccus denitrificans (PdCcO) were investigated with resonance Raman spectroscopy. Based on the Fe-CO stretching modes and low frequency heme modes, two conformers (α- and β-forms) were identified that are in equilibrium in the enzyme. The α-conformer, which is the dominant species in the wild-type enzyme, has a shorter heme a3 iron-CuB distance and a more distorted heme, as compared to the β-conformer, which has a more relaxed and open distal pocket. In general, the mutations caused a decrease in the population of the α-conformer, which is concomitant with a decreased in the catalytic activity, indicating that the α-conformer is the active form of the enzyme. The data suggest that the native structure of the enzyme is in a delicate balance of intramolecular interactions. We present a model in which the mutations destabilize the α-conformer, with respect to the β-conformer, and raise the activation barrier for the inter-conversion between the two conformers. The accessibility of the two conformers in the conformational space of CcO plausibly plays a critical role in coupling the redox reaction to proton translocation during the catalytic cycle of the enzyme.  相似文献   

16.
A total of 16 pyrrolysine conformers in their zwitterionic forms are studied in gas and simulated aqueous phase using a polarizable continuum model (PCM). These conformers are selected on the basis of our study on the intrinsic conformational properties of non-ionic pyrrolysine molecule in gas phase [Das and Mandal (2013) J Mol Model 19:1695?1704]. In aqueous phase, the stable zwitterionic pyrrolysine conformers are characterized by full geometry optimization and vibrational frequency calculations using B3LYP/6-311++G(d,p) level of theory. Single point calculations are also carried out at MP2/6-311++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. The calculated relative energy range of the conformers at B3LYP/6-311++G(d,p) level is 5.19 kcal mol?1 whereas the same obtained by single point calculations at MP2/6-311++G(d,p) level is 4.58 kcal mol?1. A thorough analysis reveals that four types of intramolecular H-bonds are present in the conformers; all of which play key roles in determining the energetics and in imparting the observed conformations to the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of the H-bonds. This study also points out that conformers with diverse structural motifs may differ in their thermodynamical stability by a narrow range of relative energy. The effects of metal coordination on the relative stability order and structural features of the conformers are examined by complexing five zwitterionic conformers of pyrrolysine with Cu+2 through their carboxylate groups. The interaction enthalpies and Gibbs energies, rotational constants, vibrational frequencies and dipole moments of the metal complexes calculated at B3LYP level are also reported. The zwitterionic conformers of pyrrolysine are not stable in gas phase; after geometry optimization they are converted to the non-ionic forms.  相似文献   

17.
We employ NMR structure determination, thermodynamics, and enzymatics to uncover the structural, thermodynamic and enzymatic properties of α/β-ODNs containing 3′-3′ and 5′-5′ linkages. RNase H studies show that α/β-gapmers that are designed to target erbB-2 efficiently elicit RNase H activity. NMR structures of DNA · DNA and DNA · RNA duplexes reveal that single α-anomeric residues fit well into either duplex, but alter the dynamic properties of the backbone and deoxyriboses as well as the topology of the minor groove in the DNA · RNA hybrid.  相似文献   

18.
19.
Using the semiempirical potential functions, conformational energies of the model compounds DMP?, d(pCp), d(pGp), and d(pCpGpCp) are calculated, and the B → Z transition is discussed along the pseudorotational path of the sugar ring. For dimethylmonophosphate anion, DMP?, the energy contour map is presented and the stabilities of the phosphodiester conformations discussed. For the sugar ring without the base attached, the minimum energies for each sugar-puckering form are calculated along the pseudorotational path. The energy barrier of the interconversion between the C(3′)-endo form and the C(2′)-endo form is calculated to be about 2.0 kcal/mol. From the conformational energy calculations of the interconversions of mononucleoside diphosphates, d(pCp) and d(pGp), between the C(2′)-endo conformer and the C(3′)-endo conformer, the purine sugar segment is known to be more convertible than the pyrimidine sugar segment. The results also support the finding that the pseudorotational transition occurred with the O(1′)-endo form more easily than with the O(1′)-exo form. Based on the results of conformational studies of DMP?, d(pCp), and d(pGp), a topological transition of the handedness of the model compound, d(pCpGpCp), is studied. The left-handed Z-form is found to be less stable by about 8.5 kcal/mol than is the right-handed B-form. The energy barrier of the Z → B transition is calculated to be about 17.4 kcal/mol. The contributions of the electrostatic and nonbonded energies to the energy barrier are discussed in connection with the conformation changes of the model compound, d(pCpGpCp).  相似文献   

20.
The influences of water solvent on the structures and stabilities of the complex ion conformers formed by the coordination of alanine dipeptide (AD) and Na+ have been investigated using supramolecular and polarizable continuum solvation models at the level of B3LYP/6-311++G**, respectively; 12 monohydrated and 12 dihydrated structures of Na+–AD complex ion were obtained after full geometrical optimization. The results showed that H2O molecules easily bind with Na+ of Na+–AD complex ion, forming an ion-lone pair interaction with the Na–O bond length of 2.1–2.3 Å. Besides, H2O molecules also can form hydrogen bonds OW–HW···O(1), OW–HW···O(2), N(1)–H(1)···OW or N(2)–H(2)···OW with O or N groups of the Na+–AD backbone. The most stable gaseous bidentate conformer C7AB of Na+–AD is still the most stable one in the solvent of water. However, the structure of the most unstable gaseous conformer α′B of Na+–AD collapses under the attack of H2O molecules and changes into C7AB conformation. Computations with IEFPCM solvation model of self-consistent reaction field theory give that aqueous C5A is more stable than C7eqB and that the stabilization energies of water solvent on monodentate conformers of Na+–AD complex ion (about 272–294 kJ/mol) are more than those on bidentate ones (about 243 kJ/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号