首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.  相似文献   

3.
Zhang H  Mao X  Zhang J  Chang X  Wang C  Jing R 《Genetica》2011,139(6):743-753
Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in plant stress signaling transduction pathways. In this study, one copy of TaSnRK2.7, a SnRK2 member of common wheat, was isolated and characterized for nucleotide diversity among 45 wheat accessions with different stress-response features. Most of the accessions were elite wheat cultivars, which had been subject to population bottlenecks and intensive selection during breeding. Nucleotide and haplotype diversity across the entire TaSnRK2.7-A region was 0.00076 and 0.590, respectively, and diversity in non-coding regions was higher than that in coding regions. Sliding-window analysis showed variable levels of nucleotide variation along the entire TaSnRK2.7-A region; the sixth intron and ninth exon represented variation-enriched regions. As predicted, neutrality tests revealed that population bottlenecks or purifying selection had acted on the TaSnRK2.7-A gene, a relatively conserved gene. Furthermore, strong linkage disequilibrium between SNP loci extends across the entire TaSnRK2.7-A region. These findings demonstrate that the TaSnRK2.7-A genomic region has evolved under extensive selection pressure during crop breeding.  相似文献   

4.
5.
6.
Caragana korshinskii Kom. is a very important shrub species for vegetation rehabilitation in northern China for its high ecological and economic values. Experiments were conducted to determine its germination responses to (i) different temperature regimes under light and/or dark conditions, (ii) different light intensities, and (iii) different water potentials combined with varied constant temperatures. Under alternating temperatures (from 5:15 to 25:35°C), final percent germinations of Caragana korshinskii were quite similar. In dark conditions, constant temperatures resulted in lower final percent germinations than alternating temperatures. At a controlled temperature regime of 10:20°C, neither final percent germinations nor germination rates showed significant differences among varied light intensities. As water potentials were reduced from 0 (distilled water) to –0.6MPa, final percent germinations increased slightly and reached the peak at approximately –0.6MPa, however, the increment was not significant. Beyond –0.6MPa, further water potential reduction led to decreased final percent germinations and few seeds could germinate at –1.4MPa. Water stress also strongly inhibited germination at very high or low temperatures. The experimental results suggested that middle May might be a suitable time for aerial seeding for this species.  相似文献   

7.
8.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

9.
10.
11.
12.
Yang J  Guo Z 《Plant cell reports》2007,26(8):1383-1390
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. Oxidative cleavage of cis-epoxycarotenoids catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the main regulatory step in the biosynthesis of ABA in higher plants. A NCED gene, SgNCED1, was cloned from the dehydrated leaves of Stylosanthes guianensis. The 2,241-bp full-length SgNCED1 had a 1,809-bp ORF, which encodes a peptide of 602 amino acids. The deduced amino acid sequence of SgNCED1 protein shared high identity with other NCEDs. At the N-terminus of the SgNCED1 located a chloroplast transit peptide sequence. DNA blot analysis revealed that SgNCED1 was a single copy gene in the genome of S. guianensis. The relationship between expression of SgNCED1 and endogenous ABA level was investigated. The expression of SgNCED1 was induced in both leaves and roots of S. guianensis under drought stress. Dehydration and salt stress induced the expression of SgNCED1 strongly and rapidly. The ABA accumulation was coincidently induced with the SgNCED1 mRNA under drought, dehydration and salt stress. The expression of SgNCED1 and ABA accumulation were also induced under chilling condition.  相似文献   

13.
14.
15.
16.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

17.
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.  相似文献   

18.
19.
20.
MAX4 gene has been shown to be involved in the regulation of shoot branching in Arabidopsis (Arabidopsis thaliana). However, little is known about the role of MAX4 gene in low inorganic phosphate (Pi) stress response in Arabidopsis. Here we showed that MAX4 gene is involved in the regulation of low Pi stress response in Arabidopsis. MAX4 gene was repressed by low Pi stress, and the max4 mutants showed lower anthocyanin content and longer primary root length. In addition, max4 mutant plants also displayed altered root architecture such as increased root-to-shoot ratio, lower lateral root number and root hair density compared with wild-type plants under low Pi stress. Higher total Pi contents were detected in shoots and roots of max4 plants than those of wild-type plants when subjected to low Pi stress, which was associated, at least in part, with increase in expression of WRKY75 as well as AtPT1 and AtPT2 genes encoding high-affinity Pi transporters. Taken together, all these results suggest that MAX4 gene mediates low Pi stress response, at least in part, by regulating the expression of WRKY75 as well as AtPT1 and AtPT2 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号