首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

2.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

3.
4.
In rat pancreatic plasma membranes, preincubated with [125I]cholecystokinin-33 (CCK-33) and washed free of unbound tracer, the irradiation by UV light induced the irreversible binding of radioactivity to high molecular weight peptides as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) and autoradiography. This was not observed when the membranes were preincubated in the simultaneous presence of [125I]CCK-33 and of either an excess of unlabelled CCK-8 or of guanosine 5'-(beta, gamma-imido)-triphosphate. The radioactivity was mostly crosslinked with a Mr 96,000 peptide and peptide species of Mr greater than 200,000, after SDS solubilization in the absence of beta-mercaptoethanol. Peptide reduction with beta-mercaptoethanol converted the high molecular weight radioactive species into a Mr 76,000 peptide that contained as much as 65% of the radioactivity crosslinked. The Mr 76,000 peptide appears, therefore, to be a disulfide-linked constituent of rat pancreatic cholecystokinin receptors.  相似文献   

5.
By SDS-polyacrylamide gel electrophoresis, mitochondrial proteins having covalently-bound flavin were analyzed. Mitochondria were prepared from the liver of rat injected with radioactive riboflavin. Radioactivity was found to be associated with four protein components. Their subunit molecular weights were 91,000, 72,000, 60,000 and 44,000. The first two components exhibited yellowish fluorescence on a gel under ultraviolet illumination. The component of the highest molecular weight seems to be a new protein containing covalently-bound flavin.  相似文献   

6.
Exposure of the alpha-adrenergic receptor of the human platelet to agonist prior to solubilization stabilizes a receptor complex of the alpha-adrenergic receptor with the GTP-binding protein(s) which modulates receptor affinity for agonists (Smith, S. K., and Limbird, L. E. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4026-4030). The soluble alpha-adrenergic receptor is characterized by retention of sensitivity to GTP and a faster rate of sedimentation in sucrose gradients than antagonist-occupied or unoccupied receptors. The present studies were undertaken to determine whether the alpha-adrenergic receptor, which is coupled to inhibition of adenylate cyclase, contains the same GTP-binding protein that is involved in activation of adenylate cyclase. The GTP-binding protein that is coupled to activation of adenylate cyclase was labeled with [32P]ADP-ribose using cholera toxin. Incorporation of [32]ADP-ribose into a Mr = 42,000 peptide in human platelet membranes was paralleled by an enhancement of GTP-sensitive catalytic activity in the membranes. However, cholera toxin treatment did not modify alpha-receptor-mediated inhibition of adenylate cyclase or interaction of the alpha-receptor with agonist agents. Moreover, sucrose gradient centrifugation revealed that the [32P]ADP-ribosylated Mr = 42,000 subunit of the stimulatory GTP-binding protein did not appear to associate with the agonist-alpha-receptor complex. These data suggest that the GTP-binding protein that mediates GTP activation of adenylate cyclase in the human platelet membrane is distinct from the GTP-binding protein that modulates alpha-adrenergic receptor affinity for agonist agents and which associates with the receptor in the presence of agonists.  相似文献   

7.
Release of bound [3H]Gpp(NH)p from NG108-15 cell membranes was induced by carbamylcholine, enkephalinamide, and norepinephrine, all of which inhibit adenylate cyclase. Release was blocked by antagonist, was greater with multiple agonists than with one, and required guanyl nucleotides. With membranes from pertussis toxin-treated cells, both total [3H] Gpp(NH)p binding and agonist-induced [3H]Gpp(NH)p release was decreased. ADP-ribosylation by toxin of transducin, the retinal GTP-binding protein which is similar in structure and function to that in cyclase, decreased [3H]Gpp(NH)p binding. Thus, the inability to demonstrate agonist-induced [3H]Gpp(NH)p release from toxin-treated NG108-15 membranes may result in part from absence of bound [3H]Gpp(NH)p.  相似文献   

8.
The sarcolemmal membranes isolated from rat skeletal muscle are capable of incorporating 32P from [γ?32P]ATP. The membrane protein phosphorylation requires Mg2+. Cyclic AMP, cyclic GMP and their dibutyrul derivatives showed no marked effect on sarcolemmal phosphorylation.The Mg2+-dependent 32P labeling was significantly enhanced by Na+. The rate of Na+ -stimulated 32P incorporation was quite rapid reaching steady state levels within 5 s at 0 °C. K+ reduced the Na+ -stimulated 32P-incorporation but enhanced the 32Pi release. This inhibitory effect of K+ on Na+ -stimulated 32P incorporation was prevented by the cardiac glycoside, ouabain.The Na+ -dependent 32P labeling showed substrate dependency and the Na+ site was saturable. The apparent Km for ATP was 2 · 10?5 M. The optimum pH for 32P labeling was between 7 and 8.Na+ -dependent membrane phosphorylation showed a direct relationship with the (Na+ + K+ATPase activity. The high turnover rate of 32P intermediate (12 000 min ?1) suggested its functional significance in the overall transport ATPase reaction sequence.The predominate portion (> 90%) of the phosphorylated membrane complex was sensitive to acidified hydroxylamine and to alkaline pH suggesting an acylphosphate nature of the phosphoprotein.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 32P incorporation occurred predominately into a 108 000 dalton subunit which is a major protein component of sarcolemmal membranes. A very low level of 32P incorporation was also observed into a 25 000 dalton subunit and Ca2+ slightly enhanced the phosphorylation of this component.The size (Mr 108 000) and some properties of the sarcolemmal phosphoprotein are closely similar to other (Na+ + K+ATPase preparations reported so far.  相似文献   

9.
The decay reactions of metarhodopsin II and the dissociation of the complex between rhodopsin (in the metarhodopsin II state) and the GTP-binding protein (G-protein) (in its inactive, GDP-binding form) have been compared at various concentrations of hydroxylamine. The reactions of the chromophore were measured by absorption changes in the visible range, the complex dissociation by changes in the near-in-frared scattering. An additional monitor of the complex was given by the G-protein-dependent equilibrium between metarhodopsin I and metarhodopsin II. For all measurements, fragments of isolated bovine rod outer segments in suspension were used. In the absence of hydroxylamine, the rhodopsin-G-protein complex dissociated within 20–30 min at room temperature. The presence of hydroxylamine greatly accelerated (e.g., 5-fold at 1 mM NH2OH) the dissociation. Under all conditions, the free, dissociated G-protein can reassociate to metarhodopsin II produced by subsequent bleaching. Dissociation of the metarhodopsin II-G-protein complex required the decay of photoproducts with a maximal absorbance of 380 nm, but was not affected by the simultaneous presence of metarhodopsin III or metarhodopsin III — like photoproducts with a maximal absorbance between 450 and 470 nm. Despite the acceleration of metarhodopsin II-G-protein dissociation by NH2OH, metarhodopsin II-G-protein was relatively stabilized as compared to free metarhodopsin II. The ratio of the decay rates of free metarhodopsin II and metarhodopsin III-G-protein was increased as much as 10-fold in the presence of 25 mM NH2OH. The results indicate a mutual interdependence of retinal, opsin and G-protein.  相似文献   

10.
11.
12.
Human erythrocyte membranes were incubated in the presence of sodium fluoride. After centrifugation at 30,000 g for 30 min the supernatant was able to stimulate the catalytic subunit of adenylate cyclase. The stimulatory factor was purified from the supernatant of fluoride-treated membranes by three subsequent chromatographic steps including DEAE-Sephacel ion-exchange chromatography in the absence of detergent, gel-filtration on Ultrogel AcA 44 in the presence of 1% sodium cholate and phenyl-Sepharose CL/4B hydrophobic chromatography. The final preparation showed approximately 120-fold purification in stimulatory activity over the initial extract and contained two polypeptides (Mr 42 kDa and 36 kDa). The stimulator activity of the preparation was inhibited by 60% by beta gamma-subunits of the GTP-binding protein of bovine brain membranes, G0. The data obtained suggest that the regulatory GTP-binding stimulatory protein of adenylate cyclase, GS, dissociates from human erythrocyte membranes as a result of fluoride-ion treatment.  相似文献   

13.
14.
We have identified by immunoblotting and ADP-ribosylation by cholera toxin and pertussis toxin the presence of Mr 43 and 46 KDa Gs, and 39 and 41 KDa Gi;.. subunits in rat parotid gland plasma membranes but not in granule membranes. A Mr 28 KDa polypeptide that served as substrate for ADP-ribosylation by both cholera toxin and pertussis toxin was present exclusively in granule membranes. Photoaffinity crosslinking of [-32P]GTP showed the presence of high molecular weight GTP-binding proteins (Mr 160,100 KDa) in granule membranes. Six low molecular weight GTP-binding proteins (Mr 21–28 KDa) were differentially distributed in both plasma membranes and granule membranes. The present study identifies various GTP-binding proteins in rat parotid gland plasma membranes and granule membranes, and demonstrates the presence of distinct molecular weight GTP-binding proteins in granule membranes. These granule-associated GTP-binding proteins may be involved in secretory processes.  相似文献   

15.
To test the hypothesis that guanine nucleotides activate adenylate cyclase by a covalent mechanism involving pyrophosphorylation of the enzyme, we studied the effect of a novel GTP analog, guanosine 5′, α-β-methylene triphosphate (Gp(CH2)pp), with a methylene bond in the α-β-position that is stable to enzymatic hydrolysis. Gp(CH2)pp was as effective as GTP in stimulating rat reticulocyte adenylate cyclase in the presence of isoproterenol. Previously only guanine nucleotides with modified terminal phosphates such as guanylyl 5′-imidodiphosphate (Gpp(NH)p) were thought capable of causing persistent activation of adenylate cyclase. Gp(CH2)pp, however, caused persistent activation of rat reticulocyte and turkey erythrocyte adenylate cyclase. We conclude that guanine nucleotides do not activate adenylate cyclase by a pyrophosphorylation mechanism and that a modified γ-phosphate is not essential in guanine nucleotides for generation of the irreversibly-activated enzyme state.  相似文献   

16.
There is a phosphopeptide that has an Mr of 53,000 to 60,000 in insulin-secreting tissues and there is general agreement that this peptide can be phosphorylated in a calcium-dependent manner. The present report shows that there are at least two phosphoproteins with Mr's near 57,000 in rat pancreatic islet cytosol. One peptide has an Mr of 57,000, a pl of 7.5 - 8 and is phosphorylated in a Ca2+-enhanced manner, and the other has an Mr of 54,000, a pl of 5 - 5.5 and is phosphorylated in a cAMP-enhanced manner, as judged by two-dimensional polyacrylamide gel electrophoresis. Sepharose 4B chromatography indicated that the former polypeptide resides in a native protein complex that has an Mr of about 500,000 and the latter in a complex that has an Mr of about 180,000. Tritiated azido cyclic AMP binds to an islet polypeptide that has an Mr of 54,000. The results suggest that Ca2+ and cAMP could regulate stimulus-secretion coupling in pancreatic islets via protein phosphorylation.  相似文献   

17.
Various analogs of adenosine 5′-triphosphate with a modified terminal phosphate group have been tested in energy-requiring reactions with intact mitochondria and submitochondrial particles.It is shown that the fluorophosphate analog ATP(γF) is a strong inhibitor of mitochondrial respiration and of energy requiring reactions which involve the participation of high energy intermediates, generated aerobically by the respiratory chain. On the other hand, ATP(γF) does not affect the ATPase activity of intact or disrupted mitochondria and is less effective in inhibiting ATP-driven reactions.The imidophosphate analog AMP-P(NH)P also inhibits the partial reactions of oxidative phosphorylation, but does not affect ATP synthesis from ADP and Pi. In contrast to ATP(γF), it is a strong inhibitor of both soluble and membrane-bound mitochondrial ATPases.The biological implication of the complementary effects of ATP(γF) and AMP-P(NH)P on mitochondria-catalysed reactions is discussed while suggesting the use of such nucleotide analogs as specific tools for the study of ATP-forming and ATP-utilizing reactions in mitochondria.  相似文献   

18.
The existence of a GTP-binding protein of the Ns type in Trypanosoma cruzi was explored. Epimastigote membranes were labelled by cholera toxin in the presence of [adenine-14C]NAD+. After SDS/polyacrylamide-gel electrophoresis of extracted membrane proteins, a single labelled polypeptide band of apparent Mr approx. 45,000 was detected. Epimastigote cells were treated with N-ethylmaleimide and electrofused to lymphoma S49 cells lacking the Ns protein. Evidence indicates that in such electrofusion-generated cell hybrids a heterologous adenylate cyclase system was reconstituted with the Ns protein provided by T. cruzi epimastigotes.  相似文献   

19.
Escherichia coli recA protein directs the inactivation of the repressor of Salmonella typhimurium phage P22 in vitro. As is true for repressor of the E. coli phage λ, inactivation of P22 repressor is accompanied by proteolytic cleavage of the repressor into two detectable fragments.We have investigated the kinetics of inactivation of the λ and P22 repressors in vitro. The fraction of λ repressor inactivated per unit time decreases as its concentration in the reaction is increased. However, high concentrations of λ repressor do not inhibit the inactivation of P22 repressor. Thus, it does not appear that the inactivation system is saturated by λ repressor, but rather that λ repressor is a less efficient substrate at higher concentrations.  相似文献   

20.
Calmodulin activates adenylate cyclase from rabbit heart plasma membranes   总被引:2,自引:0,他引:2  
It was shown that calmodulin (CM) activates the adenylate cyclase (AC) of rabbit heart light sarcolemma in the presence of micromolar free Ca2+ concentrations and this effect is blocked by trifluoroperazine and troponin I. GTP (in the presence of isoproterenol) and Gpp(NH)p are able to increase the CM-dependent activity of enzyme. It was concluded that there is no special CM-dependent "form' of AC in the heart and the common catalytic component of AC can be regulated both by CM and guanine nucleotide-binding regulatory component (N-protein). In the presence of Ca2+ and guanine nucleotide heart AC exists as a complex: CM-catalytic component-N-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号