首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene flow and drift shape the distribution of neutral genetic diversity in metapopulations, but their local rates are difficult to quantify. To identify gene flow between demes as distinct from individual migration, we present a modified Bayesian method to genetically test for descendants between an immigrant and a resident in a nonmigratory life stage. Applied to a metapopulation of pond-breeding European newts (Triturus cristatus, T. marmoratus) in western France, the evidence for gene flow was usually asymmetric and, for demes of known census size (N), translated into maximally seven reproducing immigrants. Temporal sampling also enabled the joint estimation of the effective demic population size (Ne) and the immigration rate m (including nonreproductive individuals). Ne ranged between 4.1 and 19.3 individuals, Ne/N ranged between 0.05 and 0.65 and always decreased with N; m was estimated as 0.19-0.63, and was possibly biased upwards. We discuss how genotypic data can reveal fine-scale demographic processes with important microevolutionary implications.  相似文献   

2.
Estimates of effective population size (Ne) are required to predict the impacts of genetic drift and inbreeding on the evolutionary dynamics of populations. How the ratio of Ne to the number of sexually mature adults (N) varies in natural vertebrate populations has not been addressed. We examined the sensitivity of Ne/N to fluctuations of N and determined the major variables responsible for changing the ratio over a period of 17 years in a population of steelhead trout (Oncorhynchus mykiss) from Washington State. Demographic and genetic methods were used to estimate Ne. Genetic estimates of Ne were gained via temporal and linkage disequilibrium methods using data from eight microsatellite loci. DNA for genetic analysis was amplified from archived smolt scales. The Ne/N from 1977 to 1994, estimated using the temporal method, was 0.73 and the comprehensive demographic estimate of Ne/N over the same time period was 0.53. Demographic estimates of Ne indicated that variance in reproductive success had the most substantial impact on reducing Ne in this population, followed by fluctuations in population size. We found increased Ne/N ratios at low N, which we identified as genetic compensation. Combining the information from the demographic and genetic methods of estimating Ne allowed us to determine that a reduction in variance in reproductive success must be responsible for this compensation effect. Understanding genetic compensation in natural populations will be valuable for predicting the effects of changes in N (i.e. periods of high population density and bottlenecks) on the fitness and genetic variation of natural populations.  相似文献   

3.
The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny.  相似文献   

4.
Recent agricultural intensification threatens global biodiversity with amphibians being one of the most impacted groups. Because of their biphasic life cycle, amphibians are particularly vulnerable to habitat loss and fragmentation that often result in small, isolated populations and loss of genetic diversity. Here, we studied how landscape heterogeneity affects genetic diversity, gene flow and demographic parameters in the marbled newt, Triturus marmoratus, over a hedgerow network landscape in Western France. While the northern part of the study area consists of preserved hedged farmland, the southern part was more profoundly converted for intensive arable crops production after WWII. Based on 67 sampled ponds and 10 microsatellite loci, we characterized regional population genetic structure and evaluated the correlation between landscape variables and (i) local genetic diversity using mixed models and (ii) genetic distance using multiple regression methods and commonality analysis. We identified a single genetic population characterized by a spatially heterogeneous isolation-by-distance pattern. Pond density in the surrounding landscape positively affected local genetic diversity while arable crop land cover negatively affected gene flow and connectivity. We used demographic inferences to quantitatively assess differences in effective population density and dispersal between the contrasted landscapes characterizing the northern and southern parts of the study area. Altogether, results suggest recent land conversion affected T. marmoratus through reduction in both effective population density and dispersal due to habitat loss and reduced connectivity.  相似文献   

5.
Pabijan M  Babik W 《Molecular ecology》2006,15(9):2397-2407
Genetic variation in 13 populations of the Alpine newt, Triturus alpestris, was assessed at the northeastern margin of its range (southern Poland). Variation at six microsatellite loci was scored in 354 newts, and two mitochondrial DNA fragments (c. 2000 bp) were sequenced in a subset of 27 individuals. Significant differences in allele frequencies and the presence of private alleles determined genetic units corresponding to three separate mountain ranges, i.e. the Carpathian, Sudetes and Holy Cross Mountains. F(ST)'s were three times greater in among than in within mountain range pairwise comparisons. An assignment test and pairwise F(ST)'s suggested relatively high levels of gene flow at the local level, although the Sudetes populations revealed some subtle structuring. Genetic variation was lower in the Carpathians and Holy Cross Mountains. The geographic pattern of mitochondrial DNA variation indicated that these newt populations originated from a single glacial refugium/founder population, and that the colonization of southern Poland took place in an easterly direction. The data show that substantial neutral variation and between group divergence has accumulated relatively quickly in these low-vagility organisms. The Alpine newt case exemplifies species history as a factor determining patterns of genetic diversity in marginal populations.  相似文献   

6.
The two larger newt species in Europe, Triturus cristatus and T. marmoratus , have largely exclusive distributions but live in sympatry in a small area in western France, where they also hybridize. Triturus cristatus is increasing in abundance in the area at the expense of T. marmoratus , although this study shows that T. marmoratus has higher relative lifetime reproductive success. Triturus marmoratus lays more eggs than its relative under controlled conditions, and more T. marmoratus eggs in relation to its relative abundance are found in natural breeding sites. The hybrids are even more fecund, but their eggs and embryos have a lower survival rate.
The data are compared for age at maturity and species longevity, and estimates of lifetime reproductive success show that T. marmoratus females are more fecund than T. cristatus females. There are no differences between the species in survival of the embryos. It is therefore not clear why T. cristatus is replacing T. marmoratus , but changes in terrestrial habitats due to human activity might be the explanation.  相似文献   

7.
We report the variance effective population size (Ne) in darkblotched rockfish (Sebastes crameri) utilizing the temporal method for overlapping generations, which requires a combination of age-specific demography and genetic information from cohorts. Following calculations of age-specific survival and reproductive success from fishery data, we genotyped a sample (n = 1087) comprised by 6 cohorts (from 1995 to 2000) across 7 microsatellite loci. Our Ne estimate (Ne) plus 95% confidence interval was (Ne) = 9157 [6495-12 215], showing that the breeding population number could be 3-4 orders of magnitude smaller than the census population size (N) = 24 376 210). Our estimates resemble closely those found for fishes with similar life history, suggesting that the small (Ne)/(N) ratio for S. crameri is most likely explained by a combination of high variance in reproductive success among individuals, genetic structure, and demographic perturbations such as historical fishing. Because small (Ne)/(N) ratios have been commonly associated with potential loss of genetic variation, our estimates need careful consideration in rockfish management and conservation.  相似文献   

8.
Hybridization between divergent lineages often results in reduced hybrid viability. Here we report findings from a series of independent molecular analyses over several seasons on four life stages of F1 hybrids between the newts Triturus cristatus and T. marmoratus . These two species form a bimodal hybrid zone of broad overlap in France, with F1 hybrids making up about 4% of the adult population. We demonstrate strong asymmetry in the direction of the cross, with one class ( cristatus -mothered) making up about 90% of F1 hybrids. By analyzing embryos and hatchlings, we show that this asymmetry is not due to prezygotic effects, as both classes of hybrid embryos are present at similar frequencies, implicating differential selection on the two hybrid classes after hatching. Adult F1 hybrids show a weak Haldane effect overall, with a 72% excess of females. The rarer marmoratus -mothered class, however, consists entirely of males. The absence of females from this class of adult F1 hybrids is best explained by an incompatibility between the cristatus X chromosome and marmoratus cytoplasm. It is thus important to distinguish the two classes of reciprocal-cross hybrids before making general statements about whether Haldane's rule is observed.  相似文献   

9.
The effective population size is influenced by many biological factors in natural populations. To evaluate their relative importance, we estimated the effective number of breeders per year (Nb) and effective population size per generation (Ne) in anadromous steelhead trout (Oncorhynchus mykiss) in the Hood River, Oregon (USA). Using demographic data and genetic parentage analysis on an almost complete sample of all adults that returned to the river over 15 years (>15,000 individuals), we estimated Nb for 13 run years and Ne for three entire generations. The results are as follows: (i) the ratio of Ne to the estimated census population size (N) was 0.17-0.40, with large variance in reproductive success among individuals being the primary cause of the reduction in Ne/N; (ii) fish from a traditional hatchery program (Htrad: nonlocal, multiple generations in a hatchery) had negative effects on Nb, not only by reducing mean reproductive success but also by increasing variance in reproductive success among breeding parents, whereas no sign of such effects was found in fish from supplementation hatchery programs (Hsupp: local, single generation in a hatchery); and (iii) Nb was relatively stable among run years, despite the widely fluctuating annual run sizes of anadromous adults. We found high levels of reproductive contribution of nonanadromous parents to anadromous offspring when anadromous run size is small, suggesting a genetic compensation between life-history forms (anadromous and nonanadromous). This is the first study showing that reproductive interaction between different life-history forms can buffer the genetic impact of fluctuating census size on Ne.  相似文献   

10.
During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.  相似文献   

11.
Eleven microsatellites have been characterized for Triturus macedonicus. Nine loci showed different variation patterns in a sample of 40 individuals from a single breeding pond in Zagori province (Greece), with an average number of 4.2 alleles per locus and an expected heterozygosity ranging from 0.1199 to 0.8079. Distinct cross-priming amplification rates were recovered on four additional crested newt species. Two monomorphic T. macedonicus loci were polymorphic in other Triturus species. The microsatellites developed herein could be a useful intraspecific genetic tool to undertake fine-scale population genetic analyses as well as in the study of contact zones between crested newt species.  相似文献   

12.
Effective population size (N(e)) of a natural fish population was estimated from temporal changes in allele frequencies at seven microsatellite loci. Use of a historical collection of fish scales made it possible to increase the precision of estimates by increasing the time interval between samples and to use an equation developed for discrete generations without correcting for demographic parameters. Estimates of N(e) for the time intervals 1961-1977 and 1977-1993 were 35 and 72, respectively. For the entire interval, 1961-1993, the estimate of N(e) was 48 when based on a weighted mean derived from the above two estimates or 125 when calculated from 1961 and 1993 samples only. Corresponding ratios of effective size to adult census size ranged from 0.03 to 0.14. An N(e) of 48 over a 32-year period would imply that this population lost as much as 8% of its heterozygosity in that time. Results suggest the potential for using genetic methods based on microsatellite loci data to compare historical trends in N(e) with population dynamic parameters. Such comparisons will help to evaluate the relationship between genetic diversity and long-term persistence of natural populations.  相似文献   

13.
Historically documented founder events provide opportunities to assess the effects of population size reductions on genetic variation, but the actual magnitude of genetic change can be measured only when direct comparisons can be made to the source or ancestral population. We assayed variation at nine microsatellite loci in the translocated population of the Laysan finch ( Telespiza cantans ) at Pearl and Hermes reef (PHR), and compared the level of variation to that in the source population on Laysan Island. Heterogeneity in allele frequencies was highly significant at eight of the nine loci, primarily as a result of fluctuations in allele frequencies in the three PHR populations. Intra- and interpopulational measures of genetic diversity generally matched predictions based on the well-documented history of three islet populations at PHR: significantly lower numbers of alleles and polymorphic loci, as well as higher pairwise F ST values and genetic distance, were observed for the two populations that underwent severe size reductions. Changes in heterozygosity at single loci were unpredictable, as both significant increases and decreases were observed in founder populations. A significant excess of heterozygotes was found in two populations and was highly significant over all four finch populations ( P < 0.003). Estimates of effective population size from temporal changes in heterozygosity and allele frequencies were very small ( N e≤ 30) as a result of the founding events and the constraints of islet area on population numbers. We concluded that the PHR population is not adequate as a secondary genetic reserve for T. cantans , and an alternative refuge needs to be established.  相似文献   

14.
We examined the long-term temporal (1910s to 1990s) genetic variation at eight microsatellite DNA loci in brown trout (Salmo trutta L) collected from five anadromous populations in Denmark to assess the long-term stability of genetic composition and to estimate effective population sizes (Ne). Contemporary and historical samples consisted of tissue and archived scales, respectively. Pairwise thetaST estimates, a hierarchical analysis of molecular variance (amova) and multidimensional scaling analysis of pairwise genetic distances between samples revealed much closer genetic relationships among temporal samples from the same populations than among samples from different populations. Estimates of Ne, using a likelihood-based implementation of the temporal method, revealed Ne >or= 500 in two of three populations for which we have historical data. A third population in a small (3 km) river showed Ne >or= 300. Assuming a stepping-stone model of gene flow we considered the relative roles of gene flow, random genetic drift and selection to assess the possibilities for local adaptation. The requirements for local adaptation were fulfilled, but only adaptations resulting from strong selection were expected to occur at the level of individual populations. Adaptations resulting from weak selection were more likely to occur on a regional basis, i.e. encompassing several populations. Ne appears to have declined recently in at least one of the studied populations, and the documented recent declines of many other anadromous brown trout populations may affect the persistence of local adaptation.  相似文献   

15.
The genetic structure of brown trout (Salmo trutta) populations inhabiting rivers on the island of Bornholm in the Baltic Sea was studied on a spatial and temporal scale. Low water levels in the rivers during the summer period are assumed to have a significant impact on the persistence of local populations, possibly resulting in a metapopulation structure. Extinctions may, however, also be buffered by a remnant strategy, whereby juveniles escape to river outlets during periods of drought. We compared polymorphism at seven microsatellite DNA loci in contemporary and past samples collected from 1944 to 1997. A principal component analysis, a hierarchical gene diversity analysis and assignment tests showed that the genetic composition of populations was not temporally stable, and that temporal genetic differentiation was much stronger than spatial differentiation. Genetic variability was high and stable over time. Effective population sizes (Ne) and migration rate (m) were estimated using a maximum-likelihood-based implementation of the temporal method. Ne estimates were low (ranging from 8.3 to 22.9) and estimates of m were high (between 0.23 and 0.99), in contrast to other Danish trout populations inhabiting larger and more environmentally stable rivers (Ne between 39.2 and 289.9 and m between 0.01 and 0.09). Thus, the observed spatio-temporal patterns of genetic differentiation can be explained by drift in small persisting populations, where levels of genetic variation are maintained by strong gene flow. However, observations of rivers devoid of trout suggested that population turnover also takes place. We suggest that Bornholm trout represent a metapopulation where the genetic structure primarily reflects strong drift and gene flow, combined with occasional extinction-recolonization events.  相似文献   

16.
利用8个微卫星标记分析了6个生产类群鸡的遗传多样性。计算了各群体在各位点上的等位基因频率,并据此计算出各群体的平均遗传杂合度(h)、多态信息含量(PIC)和有效等位基因数(Ne)。结果表明:6个鸡群在8个微卫星座位上的基因频率存在明显的差异,其平均基因杂合度为0.7317,平均多态信息含量为0.6815。其中,群体平均杂合度最高的是安卡红鸡,为0.7716;平均杂合度最低的是新罗曼鸡,为0.7073。所选的8个微卫星座位均为高度多态,可作为有效的遗传标记用于鸡群体遗传多样性的分析。  相似文献   

17.
Population viability has often been assessed by census of reproducing adults. Recently this method has been called into question and estimation of the effective population size (Ne) proposed as a complementary method to determine population health. We examined genetic diversity in five populations of chinook salmon (Oncorhynchus tshawytscha) from the upper Fraser River watershed (British Columbia, Canada) at 11 microsatellite loci over 20 years using DNA extracted from archived scale samples. We tested for changes in genetic diversity, calculated the ratio of the number of alleles to the range in allele size to give the statistic M, calculated Ne from the temporal change in allele frequency, used the maximum likelihood method to calculate effective population size (NeM), calculated the harmonic mean of population size, and compared these statistics to annual census estimates. Over the last two decades population size has increased in all five populations of chinook examined; however, Ne calculated for each population was low (81-691) and decreasing over the time interval measured. Values of NeM were low, but substantially higher than Ne calculated using the temporal method. The calculated values for M were generally low (M < 0.70), indicating recent population reductions for all five populations. Large-scale historic barriers to migration and development activities do not appear to account for the low values of Ne; however, available spawning area is positively correlated with Ne. Both Ne and M estimates indicate that these populations are potentially susceptible to inbreeding effects and may lack the ability to respond adaptively to stochastic events. Our findings question the practice of relying exclusively on census estimates for interpreting population health and show the importance of determining genetic diversity within populations.  相似文献   

18.
The number of greater prairie-chickens in Wisconsin has decreased by 91% since 1932. The current population of approximately 1500 birds exists primarily in four isolated management areas. In previous studies of the Wisconsin populations we documented low levels of genetic variation at microsatellite loci and the mitochondrial DNA control region. Here we investigate changes in genetic structure between the four management areas in Wisconsin over the last 50 years. We estimated the harmonic mean effective population size (Ne) over the last 50 years by comparing allele frequencies from the early 1950s with those from contemporary samples. Using a pseudo-likelihood approach that accounted for migration, estimates of Ne (15-32 prairie-chickens within each management area) were 10 times lower than census numbers from booming-ground counts. These low estimates of Ne are consistent with increased habitat fragmentation and an increase in genetic isolation between management areas over the last 50 years. The reduction of gene flow between areas has reduced Ne, increased genetic drift and, consequently, reduced genetic variation. These results have immediate consequences for the conservation of the prairie-chicken, and highlight the importance of how mating systems and limited dispersal may exacerbate the loss of genetic variation in fragmented populations.  相似文献   

19.
The brown alga Fucus serratus is a key foundation species on rocky intertidal shores of northern Europe. We sampled the same population off the coast of southern Norway in 2000 and 2008, and using 26 microsatellite loci, we estimated the changes in genetic diversity and effective population size (Ne). The unexpectedly low Ne (73-386) and Ne/N ratio (10-3-10-4), in combination with a significant decrease (14%) in allelic richness over the 8-year period, suggests an increased local extinction risk. If small Ne proves to be a common feature of F. serratus, then being abundant may not be enough for the species to weather future environmental changes.  相似文献   

20.
Monitoring of 28 waterbodies has been carried out since 1994 in the region of reserve "Lake Glubokoe" (Moscow region, Russia). It was revealed that species diversity as well as abundance of larval amphibians correlate negatively with presence of introduced fish, rotan, Perccottus glenii (Odontobutidae). Newts (Triturus cristatus, T. vulgaris) and frogs (Rana temporaria, R. arvalis, R. lessonae) as a rule are not capable to breed in waterbodies colonised by rotan. In contrast, toads (Bufo bufo) breed successfully in such sites. Larvae of toads are comparatively less edible for rotan and pass their metamorphosis. Persistence of amphibians to predation of rotan decreases in the row: B. bufo (R. temporaria, R. arvalis and R. lessonae), T. vulgaris, T. cristatus. The Crested newt (T. cristatus) is the most endangered species and could extinct in next years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号