首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function.

Methodology/Principal Findings

To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures.

Conclusion

These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.  相似文献   

2.

Background  

Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR.  相似文献   

3.
4.

Background  

A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions.  相似文献   

5.

Background  

Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.  相似文献   

6.
7.

Background  

While gene duplication is known to be one of the most common mechanisms of genome evolution, the fates of genes after duplication are still being debated. In particular, it is presently unknown whether most duplicate genes preserve (or subdivide) the functions of the parental gene or acquire new functions. One aspect of gene function, that is the expression profile in gene coexpression network, has been largely unexplored for duplicate genes.  相似文献   

8.

Background  

Variation in gene expression is extensive among tissues, individuals, strains, populations and species. The interactions among these sources of variation are relevant for physiological studies such as disease or toxic stress; for example, it is common for pathologies such as cancer, heart failure and metabolic disease to be associated with changes in tissue-specific gene expression or changes in metabolic gene expression. But how conserved these differences are among outbred individuals and among populations has not been well documented. To address this we examined the expression of a selected suite of 192 metabolic genes in brain, heart and liver in three populations of the teleost fish Fundulus heteroclitus using a highly replicated experimental design.  相似文献   

9.

Background  

Monozygotic twin pairs who are genetically identical would be potentially useful in gene expression study for specific traits as cases and controls, because there would be much less gene expression variation within pairs compared to two unrelated individuals. However the twin pair has to be discordant for the particular trait or phenotype excluding those resulting from known confounders. Such discordant monozygotic twin pairs are rare and very few studies have explored the potential usefulness of this approach.  相似文献   

10.
11.

Background  

The duplication-degeneration-complementation (DDC) model has been proposed as an explanation for the unexpectedly high retention of duplicate genes. The hypothesis proposes that, following gene duplication, the two gene copies degenerate to perform complementary functions that jointly match that of the single ancestral gene, a process also known as subfunctionalization. We distinguish between subfunctionalization at the regulatory level and at the product level (e.g within temporal or spatial expression domains).  相似文献   

12.
13.
14.
15.

Background

Understanding how DNA sequence polymorphism relates to variation in gene expression is essential to connecting genotypic differences with phenotypic differences among individuals. Addressing this question requires linking population genomic data with gene expression variation.

Results

Using whole genome expression data and recent light shotgun genome sequencing of six Drosophila simulans genotypes, we assessed the relationship between expression variation in males and females and nucleotide polymorphism across thousands of loci. By examining sequence polymorphism in gene features, such as untranslated regions and introns, we find that genes showing greater variation in gene expression between genotypes also have higher levels of sequence polymorphism in many gene features. Accordingly, X-linked genes, which have lower sequence polymorphism levels than autosomal genes, also show less expression variation than autosomal genes. We also find that sex-specifically expressed genes show higher local levels of polymorphism and divergence than both sex-biased and unbiased genes, and that they appear to have simpler regulatory regions.

Conclusion

The gene-feature-based analyses and the X-to-autosome comparisons suggest that sequence polymorphism in cis-acting elements is an important determinant of expression variation. However, this relationship varies among the different categories of sex-biased expression, and trans factors might contribute more to male-specific gene expression than cis effects. Our analysis of sex-specific gene expression also shows that female-specific genes have been overlooked in analyses that only point to male-biased genes as having unusual patterns of evolution and that studies of sexually dimorphic traits need to recognize that the relationship between genetic and expression variation at these traits is different from the genome as a whole.  相似文献   

16.

Background

Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster.

Principal Findings

We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females.

Conclusions

These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host''s response to the sigma virus.  相似文献   

17.
18.

Background  

Organisms are capable of developing different phenotypes by altering the genes they express. This phenotypic plasticity provides a means for species to respond effectively to environmental conditions. One of the most dramatic examples of phenotypic plasticity occurs in the highly social hymenopteran insects (ants, social bees, and social wasps), where distinct castes and sexes all arise from the same genes. To elucidate how variation in patterns of gene expression affects phenotypic variation, we conducted a study to simultaneously address the influence of developmental stage, sex, and caste on patterns of gene expression in Vespula wasps. Furthermore, we compared the patterns found in this species to those found in other taxa in order to investigate how variation in gene expression leads to phenotypic evolution.  相似文献   

19.
A DNA microarray survey of gene expression in normal human tissues   总被引:3,自引:1,他引:2       下载免费PDF全文

Background  

Numerous studies have used DNA microarrays to survey gene expression in cancer and other disease states. Comparatively little is known about the genes expressed across the gamut of normal human tissues. Systematic studies of global gene-expression patterns, by linking variation in the expression of specific genes to phenotypic variation in the cells or tissues in which they are expressed, provide clues to the molecular organization of diverse cells and to the potential roles of the genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号