首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract Termites are major decomposers in tropical ecosystems. To characterize their assemblages in terms of taxonomical and functional composition, Jones and Eggleton (2000, Journal of Applied Ecology 37, 191–203) recently proposed a standardized sampling protocol based on belt transects of 100 m × 2 m. We evaluated the representativeness of samples obtained by this protocol, and its suitability to calculate diversity statistics, by replicating it in an area of naturally fragmented subtropical forest. We sampled six 100 m transects in separate small forest islets, and one transect extended to 500 m in a large islet, recording presence/absence data (occurrences) of termite species in successive quadrats of 5 m × 2 m. In the large islet, strips of 100 m within the 500 m transect produced extremely variable species richness figures. This variability was primarily due to heterogeneity in the spatial distribution of soil‐dwelling termites. Combining non‐contiguous quadrats allowed us to span a broader diversity of microhabitats for an equal effort, providing less variable results and faster species accumulation. Individual transects of 100 m in small forest islets yielded too few samples to allow reliable estimations of total species richness, although these transects when pooled constituted a useful data set for comparison with other sites. In the focal habitat, a single 100 m transect appeared therefore inadequate to allow a reliable characterization of the termite assemblage, even at the level of a single forest islet. To improve the rate of species accumulation and to obtain diversity statistics allowing intersite comparisons, we suggest the use of smaller, non‐contiguous quadrats, and that sampling be continued until stable diversity estimates are obtained. In the habitat studied, such an alternative protocol could be adequately combined with a standardized protocol for collecting ground‐dwelling ants.  相似文献   

2.
Abstract Mensurative experiments investigated the effects of different observers on estimates of the density of shoots of two species of seagrass: Posidonia australis Hook and Zostera capricorni Aschers. Balanced programmes of sampling were used to examine variation in counts of seagrass shoots attributable to different observers, sizes of quadrats, depths and locations within large beds of each species of seagrass. A separate experiment examined differences between novice observers and a more experienced observer, when an ‘optimal’ size of sampling unit was used. Estimated densities of Zostera shoots varied inconsistently among observers, quadrats, depths and locations. Differences between observers were not affected by the size of quadrat used to count Posidonia shoots, but varied between locations in the seagrass bed. Experience had only a minor impact on biases. Only two of 12 novices produced counts that were different from the experienced observer. These results emphasize the importance of considering both accuracy and precision in the design of field studies of seagrasses.  相似文献   

3.
Abstract. The efficiency of four nonparametric species richness estimators — first‐order Jackknife, second‐order Jackknife, Chao2 and Bootstrap — was tested using simulated quadrat sampling of two field data sets (a sandy ‘Dune’ and adjacent ‘Swale’) in high diversity shrublands (kwongan) in south‐western Australia. The data sets each comprised > 100 perennial plant species and > 10 000 individuals, and the explicit (x‐y co‐ordinate) location of every individual. We applied two simulated sampling strategies to these data sets based on sampling quadrats of unit sizes 1/400th and 1/100th of total plot area. For each site and sampling strategy we obtained 250 independent sample curves, of 250 quadrats each, and compared the estimators’ performances by using three indices of bias and precision: MRE (mean relative error), MSRE (mean squared relative error) and OVER (percentage overestimation). The analysis presented here is unique in providing sample estimates derived from a complete, field‐based population census for a high diversity plant community. In general the true reference value was approached faster for a comparable area sampled for the smaller quadrat size and for the swale field data set, which was characterized by smaller plant size and higher plant density. Nevertheless, at least 15–30% of the total area needed to be sampled before reasonable estimates of St (total species richness) were obtained. In most field surveys, typically less than 1% of the total study domain is likely to be sampled, and at this sampling intensity underestimation is a problem. Results showed that the second‐order Jackknife approached the actual value of St more quickly than the other estimators. All four estimators were better than Sobs (observed number of species). However, the behaviour of the tested estimators was not as good as expected, and even with large sample size (number of quadrats sampled) all of them failed to provide reliable estimates. First‐ and second‐order Jackknives were positively biased whereas Chao2 and Bootstrap were negatively biased. The observed limitations in the estimators’ performance suggests that there is still scope for new tools to be developed by statisticians to assist in the estimation of species richness from sample data, especially in communities with high species richness.  相似文献   

4.
While best practices for evaluating restoration ecology projects are emerging rapidly, budget constraints often limit postrestoration monitoring, which emphasizes the need for practical and efficient monitoring strategies. We examined the postrestoration outcome for an ENGO (Nature Conservancy of Canada) project, to assess retroactively how variation in intensity and frequency of sampling would have affected estimates of plant species composition, diversity, and richness over time. The project restored four habitat types (mesic forest, oak woodland, wet meadow, and sand barren) using sculptured seeding of tallgrass prairie and woody species. Species‐level plant cover was monitored annually for 10 years in 168 2 × 2–m quadrats. We performed randomization tests to examine estimates of species diversity and richness as a function of the number of quadrats sampled, and assessed the necessity of annual sampling for describing changes in species composition and successional trajectories. The randomization tests revealed that sampling 10–17 quadrats, depending on habitat type, was sufficient to obtain estimates of species diversity that were at least 95% of values obtained from the whole dataset. Species richness as a function of number of quadrats sampled did not plateau, which suggests that rather than increasing the number of sampling quadrats, richness could be estimated more efficiently using nonquadrat based sampling techniques. Nonmetric multidimensional scaling analysis revealed that plant species composition largely stabilized by 3–5 years postrestoration depending on habitat type. By that time, native, seeded species dominated the restoration, and the benefits of annual sampling for tracking changes in species composition diminished.  相似文献   

5.
The importance of mounds created by Macrotermes subhyalinus as safe site for tree regeneration was analysed in a savannah woodland of Burkina Faso. Plantlets (height <1.5 m) were sampled and followed over an year in 72 × 4 m2 quadrats located on M. subhyalinus mounds and adjacent areas. The mechanisms of regeneration and plantlet mortality were also determined. We identified three regeneration mechanisms: seedlings regenerated by seed (abundant on mounds), sprouts (abundant on adjacent areas) and root suckers (a rare case on both sites). A total of 37 species representing 17 families and 30 genera were found on all quadrats, of which 29 species were found on termite mounds and 22 species on adjacent areas. Species richness and density of plantlets at the 4 m2 scale were higher on mounds than in the adjacent area (P < 0.05). Among plantlet categories, seedling density was significantly different among microhabitats (P < 0.001) and across sampling periods (P < 0.01) and, the majority of plantlet individuals appeared within the 0–25 cm height class. The mortality of plantlets and particularly seedling mortality differed significantly between microhabitats (P < 0.01) and between periods (P < 0.01), whereas more than half the variation in the death of Acacia erythrocalyx seedlings (the most abundant species) were related to the density of the live seedlings of the same species (P < 0.001). The observed mortality rate was way below 50%; plantlet density remained higher on mound during sampling periods as compared to the adjacent area. It can thus be concluded that Macrotermes termite mounds are favourable sites for the recruitments of woody plants in savannah woodlands.  相似文献   

6.
ABSTRACT Regular monitoring of seabird populations is necessary to improve our understanding of their responses to environmental change and inform conservation management. However, given the difficulty in accessing remote breeding sites and the limited resources typically available to land managers, conducting regular, extensive surveys of seabird populations is often not feasible. Our objective was to determine the minimum survey effort required to obtain accurate and precise population estimates of Short‐tailed Shearwaters (Ardenna tenuirostris) and Little Penguins (Eudyptula minor), two abundant burrowing seabird species in southeastern Australia, by comparing bootstrapped means and confidence intervals under different sampling regimes on four islands. We found that, in many cases, survey effort (the proportion of transects and quadrats along transects surveyed) could be reduced. For Short‐tailed Shearwaters, reducing the number of transects resulted in a maximum difference of 15% between the means at full survey effort and two levels of reduced survey effort. Means differed by <3% when we halved the number of quadrats. For Little Penguins, reducing the number of transects and quadrats by 50% resulted in differences of 7–40% and 4–34%, respectively, between the full and reduced survey effort means. Confidence intervals generally increased with decreasing survey effort for both species. Differences in required survey effort between the two species in our study may have been due to differences in burrow distribution on islands, with Short‐tailed Shearwater burrows generally uniformly distributed on each island and Little Penguin burrows typically occurring in patches. These would be influenced by island‐specific characteristics in concert with habitat preferences, population size, and seasonal variation in seabird abundance. Stratified sampling did not increase survey accuracy and simulations showed that large reductions in survey effort could be made under a pseudo‐random sampling regime, with mean abundance estimates similar at most levels of survey effort. For both species, reducing the proportion of pseudo‐random quadrats to 50% and 25% of the full survey effort produced confidence intervals of 12% and 21%, respectively, of the maximum, whereas a survey effort of 10% produced confidence intervals of up to 36% of the maximum for both species. A pseudo‐random sampling regime would maximize survey efficiency because considerably fewer quadrats would be required and allow development of more efficient sampling protocols and regimes.  相似文献   

7.
Commercial interest in harvesting wild stocks ofPorphyra and concern for this prized resource by the Maori community highlighted the need to investigate the impact of harvest method and timing onPorphyra beds. Harvesting trials were carried out at two locations near Kaikoura (South Island) and one in Wellington (southern North Island) between June 1987 and September 1987. At each of five sampling sites, ten replicate sets of four quadrats were used to test the effects of harvest method and timing on yield and regeneration. The method of harvest had a major effect on the extent of regeneration: in quadrats in which thePorphyra had been cut with basal portions left intact there were harvestable plants within two months, whereas in quadrats which were cleared of allPorphyra there was very little growth after the same period. Harvests in the latter half of thePorphyra growing season gave greater yields at all sites except Wellington. Several species ofPorphyra were found to exist at the Kaikoura sampling sites and a single, different, species at the Wellington site. There were site to site differences in the yields.  相似文献   

8.
Relationships between canopy cover and tree regeneration were determined for various species in cove forests of the Great Smoky Mountains. Old-growth stands were sampled with six plots covering a total area of 4.8 ha. Each plot was subdivided into contiguous 10×10 m quadrats. Canopy cover overlying each of the 480 quadrats was characterized with three different indices based on visual estimates of cover. Influences of: (1) overlying cover, (2) proximate openings, and (3) total area of proximate openings on quadrat regeneration densities were determined. Most species reproducing by seed and some species reproducing by vegetative means had higher densities in quadrats with openings, but only the intolerants were highly dependent on gaps. Tsuga canadensis, a very shade-tolerant species, was one of the few species with abundant regeneration beneath dense canopy cover. In general, understory areas near gaps had somewhat higher regeneration densities than other areas with overlying cover. Several shade-tolerant species showed a positive regeneration density response to canopy openings and an ability to regenerate in gaps 0.01–0.03 ha in area. These openings were too small for intolerant species. Many species exhibited a positive response to total size of the proximate opening(s). A sharp increase in regeneration density with area of the opening(s) was evident at approximately 0.04 ha for the shade-intolerant species.  相似文献   

9.
Densities of winter ticks (Dermacentor albipictus) were determined on each of 20 moose (Alces alces) half-hides by dissolving 100 cm2 quadrats in potassium hydroxide solution. Data were then used to determine the optimum sampling fraction for estimating tick densities. Random sampling was applied to 20 additional half-hides of known tick density to assess the accuracy of the estimates. We conclude that random sampling of 15% of the quadrats produces a good estimate of tick density. Total numbers of ticks were highly correlated with tick density.  相似文献   

10.
ABSTRACT Estimating detection error, as well as the magnitude of other potential survey biases, is essential when sampling efforts play a role in the estimation of population size and management of wildlife populations. We quantified visual biases in aerial surveys of nesting wading birds (Ciconiiformes) in colonies in the Florida Everglades using a negative binomial count regression model to compare numbers of nests in quadrats counted on the ground with numbers estimated from aerial photographs of the same quadrats. The model also allowed the determination of degree of difference between monitoring results based upon such factors as nest density, vegetative cover, and nest turnover rates. Aerial surveys of White Ibis (Eudocimus albus) colonies underestimated the true number of nests found during ground counts by 11.1%, and underestimates were significantly greater (P= 0.047) in a colony with high nest turnover. Error rates did not differ for quadrats that varied in the density of White Ibis nests did not differ, and visual bias did not increase with vegetative complexity (P= 0.73). Estimates of nest density in colonies of Great Egrets (Ardea alba) based on aerial surveys were higher than ground counts for 38% of the quadrats sampled, and mean visual bias was 23.1%. Species misidentification likely contributed to visibility bias for Great Egrets in our study, with some Snowy Egrets almost certainly mistaken for Great Egrets in aerial photos. Biases of the magnitude we observed fro Great Egrets and White Ibises can mask true population trends in long‐term monitoring and, therefore, we recommend that detection probability be explicitly evaluated when conducting aerial surveys of nesting birds.  相似文献   

11.
High-density herbivore species often play an important role in forest regeneration. Native sika deer (Cervus nippon yakushimae) inhabit a high density (51.5–63.8head/km2, estimated by a pellet count method) area in the western part of a lowland natural forest on Yakushima Island, Japan. To test experimentally the impact of sika deer on the mortality and the survivability of current-year seedlings, which are at a more vulnerable stage than the later stages, we constructed fenced exclosures, planted seeds of nine sapfruit tree species and compared the mortality and the survivability of current-year seedlings between fenced and unfenced quadrats. Large seeded species had significantly greater survivability in fenced quadrats than in unfenced quadrats. However, the survivability disagreed with feeding preferences. Sika deer activity increased seedling mortality of large-seeded species more than that of small-seeded species, and did not decrease much seedling survivability of not-preferred species. We found that the physical disturbance by the high density of sika deer resulted in mortality for both preferred and not-preferred species, and that deer herbivory was important for preferred species.  相似文献   

12.
The density of nymphs of the bush tick, Haemaphysalis longicornis, was investigated by the catch effort method with flagging. The spatial distribution of H. longicornis nymphs fit the model of contagiously distributed colonies by Iwao's m*-m analysis (Iwao 1968). A sequential sampling method was used to predict the theoretical point at which to stop sampling. Our analysis showed that five quadrats (4 m x 4 m) were sufficient to estimate the density of H. longicornis nymphs with a mean density of 5.39 per quadrat. We estimated the tick density by two methods with respect to the sampling interval. The estimated density of ticks based on ticks collected during short sampling intervals (within a half hour) was 511.34 in the 18 quadrats with the extrapolation of the linear regression equation. On the other hand, for the long interval sampling, the total number of ticks estimated by the linear regression equation was 635.47 in six quadrats in which ticks had been collected by long interval sampling. There was a significant difference between the slopes of the two linear regression equations, suggesting that the rate of reduction in the number of H. longicornis nymphs in the study area by the catch effort method differed between the two sampling methods.  相似文献   

13.
To investigate the influence of multiple canopy openings on the composition and diversity of recruited saplings in a forest frequently disturbed by typhoons. We conducted tree-by-tree censuses (diameter at breast height ≥ 1 cm) and mapped gaps (canopy height < 5 m) in 1993, 2000, 2008, and 2013 in a tropical mountain zonal foothill evergreen broad-leaved forest in Nanjenshan Nature Reserve, Taiwan. We analyzed the composition and diversity of recruited saplings within a 2.1 ha plot (840 sampling quadrats (5 m × 5 m)) with variable numbers of canopy openings recorded during the study period. Composition of recruited saplings was dissimilar between quadrats that stayed opened and those that stayed closed throughout the study period (pairwise similarity estimates C02 = 0.52, 95% CI = 0.38–0.66). The quadrats under closed canopy had high diversity when weighting rare species (species richness), whereas quadrats with one or two gap opening records during the past 20 years had high diversity when weighting the abundance of species. Although canopy openings provided establishment conditions for saplings of some shade-intolerant species, due to the nature of small gap size, such habitats do not favor the dominance of shade-intolerant species. Even in a frequently disturbed forest, species composition and richness of recruited saplings were mainly contributed by shade-tolerant species. Although multiple canopy openings facilitated the establishment of shade-intolerant species, species diversity in the study forests is possibly mainly mediated by coexistence mechanisms of those shade-tolerant species rather than light-gap-related species strategies.  相似文献   

14.
Prairie fens are globally vulnerable wetlands that are considered a conservation priority due to threats to their high biodiversity and hydrological functions. Establishing a thorough and repeatable plant sampling protocol is critical to evaluating conservation and management initiatives. Our goal was to evaluate a sample methodology designed to assess prairie fen plant diversity and determine if it produced results (1) representative of site diversity, (2) comparable among fens, and (3) efficient to collect. Nineteen fens between 8.5 and 28.4 ha were surveyed twice within one growing season during 2012 and 2013 field seasons using an area-proportional, random design. The turnover in species between spring and summer sampling periods within a site ranged from 8 to 50 %. Sample coverage of total estimated plant species richness ranged from 84.8 to 95.0 % with a mean of 90.1 %. We compared results from our area-proportional, random design to simulated random samples of 10, 15, 20, 25, 30, 35 and 40 quadrats per site. No significant difference was found in sample coverage per fen when using sampling rates of 25, 30, or 35 quadrats per site versus the area-proportional design. Shannon’s diversity index and floristic quality index differed by sample period and number of quadrats sampled per fen. Our sample design produced acceptable levels of coverage and facilitated comparisons across fens. Our methodology could be applied to future research, restoration monitoring, and conservation planning efforts in Midwestern prairie fens.  相似文献   

15.
Arthropod population field studies undertaken to understand the impacts and population dynamics of the target organism rely on sampling methods that provide accurate measurements of population density. Unsuitable methods may underestimate or provide widely variable measures of population density. The suitability of three vacuum sampling methods: a domestic vacuum cleaner, Vortis™, and blower-vac (G-vac), plus heat extraction of turves were compared for sampling common species in an intensively grazed irrigated dairy pasture. Each method used a different approach to sampling with the number of samples per method based on protocols that had been used in grasslands. Overall, for adults of the weevil Listronotus bonariensis, no method provided a consistently high mean density, while for adults of the weevil Sitona obsoletus, the vacuum cleaner and turf heat extraction methods gave generally higher mean densities. For predatory beetles and lacewings, heat extraction was the most effective for density measurements, while for ladybirds and spiders, the Vortis™ provided the best estimate of mean density. Increasing pasture dry matter (kg Dm/ha) generally had a significant negative effect on S. obsoletus density but not for L. bonariensis. While no method was consistently superior than another, the vacuum cleaner and heat extraction methods generally provided higher mean densities. The G-vac generally produced the lowest density estimates, but the sampling protocol meant a larger collection area per unit effort and therefore the probability of detection was higher compared with the three other methods. In conclusion, the study showed that the optimal sampling method depends on the taxa targeted, and more than one method may be required to measure density and diversity of species in both natural and modified grasslands.  相似文献   

16.
Scale dependence of diversity measures in a leaf-litter ant assemblage   总被引:5,自引:0,他引:5  
A reliable characterization of community diversity and composition, necessary to allow inter‐site comparisons and to monitor changes, is especially difficult to reach in speciose invertebrate communities. Spatial components of the sampling design (sampling interval, extent and grain) as well as temporal variations of species density affect the measures of diversity (species richness S, Buzas and Gibson's evenness E and Shannon's heterogeneity H). Our aim was to document the small‐scale spatial distribution of leaf litter ants in a subtropical dry forest of the Argentinian Chaco and analyze how the community characterization was best achieved with a minimal sampling effort. The work was based on the recent standardized protocol for collecting ants of the leaf litter (“A.L.L.”: 20 samples at intervals of 10 m). To evaluate the consistency of the sampling method in time and space, the selected site was first subject to a preliminary transect, then submitted after a 9‐month interval to an 8‐fold oversampling campaign (160 samples at interval of 1.25 m). Leaf litter ants were extracted from elementary 1 m2 quadrats with Winkler apparatus. An increase in the number of samples collected increased S and decreased E but did not affect much H. The sampling interval and extent did not affect S and H beyond a distance of 10 m between samples. An increase of the sampling grain had a similar effect on S than a corresponding increase of the number of samples collected, but caused a proportionaly greater increase of H. The density of species m?2 varied twofold after a 9‐month interval; the effect on S could only be partially corrected by rarefaction. The measure of species numerical dominance was little affected by the season. A single standardized A.L.L. transect with Winkler samples collected <45% of the species present in the assemblage. All frequent species were included but their relative frequency was not always representative. A log series distribution of species occurrences was oberved. Fisher's α and Shannon's H were the most appropriate diversity indexes. The former was useful to rarefy or abundify S and the latter was robust against sample size effects. Both parametric and Soberón and Llorente extrapolation methods outperformed non‐parametric methods and yielded a fair estimate of total species richness along the transect, a minimum value of S for the habitat sampled.  相似文献   

17.
Spatial patterns of Meloidogyne incognita, Tylenchorhynchus claytoni, Helicotylenchus dihystera, and Criconemella ornata were analyzed using Hill''s two-term local quadrat variance method (TTLQV), spectral analysis, and spatial correlation. Data were collected according to a systematic grid sampling plan from seven tobacco fields in North Carolina. Different estimates of nematode cluster size were obtained through TTLQV and spectral analysis. No relationship was observed between either estimate and nematode species, time of sampling (spring vs. fall), or mean density. Cluster size estimates obtained from spectral analysis depended on sampling block size. For each species examined, spatial correlations among nematode population densities were greater within plant rows than across rows, indicating that clusters were ellipsoidal with long axes oriented along plant rows. Analysis of mean square errors indicated that significant gains in sampling efficiency resulted from orienting the long axis of sampling blocks across plant rows. Spatial correlation was greater in the fall than in spring and was greater among 1 × 1-m quadrats than among 3 × 3-m quadrats.  相似文献   

18.
A monitoring protocol that schedules future sample bouts based on the outcome of density classification and expected population growth has been developed and applied to monitoring European red mite (Panonychus ulmi Koch) through a growing season. The monitoring protocol is based on concatenating through time tripartite sequential classification sampling plans that use binomial counts in lieu of complete enumeration. Binomial counts are scored positive when the number of organisms (mites) on a sample unit (leaves) exceeds a tally number. At each sample occasion the monitoring procedure leads to one of three possible decisions; intervene when the density is high, sample at the next sample occasion (after one week) when the density is intermediate, and sample at the second next sample occasion (after two weeks) when the density is low. Evaluation of the monitoring protocol under field conditions showed that the protocol with constituent tally 0 binomial count sampling plans was quite successful in timing intervention at the moment when population densities were about to exceed an established threshold that dictated intervention. The performance of this monitoring protocol and another protocol in which constituent sampling plans used binomial counts with a tally number of 4 were compared using simulation. Sampling plans that used a tally number of 4 were more precise than plans that used a tally number of 0. However, the overall performance of the monitoring protocol based on tally 0 sampling plans did not greatly differ from the monitoring protocol based on tally 4 sampling plans. Simulated performance of the tally 0 protocol was corroborated by field evaluation. The monitoring protocol based on tripartite classification required 30 to 45 percent fewer sample bouts than a protocol based on conventional sequential classification at weekly intervals. The monitoring protocol based on tripartite classification was also better able to schedule intervention when needed compared to a protocol based on conventional classification at two week intervals. Using the tally 0 protocol and current thresholds forP. ulmi, cumulative mite density was kept below 300 mite-days per leaf, which is well below levels regarded damaging. A tally 0 protocol with raised thresholds, developed on the basis of this finding, gave the best simulated performance of all protocols evaluated.  相似文献   

19.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

20.
Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult‐to‐capture species, genetic surveys from noninvasive collection of hair or scat has proved cost‐efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single‐session NGS sampling of hares. We compared spatial capture–recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost‐effective sampling protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号