首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oxygen and reactive oxygen species (ROS) have been co-opted during evolution into the regulation of plant growth, development, and differentiation. ROS and oxidative signals arising from metabolism or phytohormone-mediated processes control almost every aspect of plant development from seed and bud dormancy, liberation of meristematic cells from the quiescent state, root and shoot growth, and architecture, to flowering and seed production. Moreover, the phytochrome and phytohormone-dependent transmissions of ROS waves are central to the systemic whole plant signaling pathways that integrate root and shoot growth. The sensing of oxygen availability through the PROTEOLYSIS 6 (PRT6) N-degron pathway functions alongside ROS production and signaling but how these pathways interact in developing organs remains poorly understood. Considerable progress has been made in our understanding of the nature of hydrogen peroxide sensors and the role of thiol-dependent signaling networks in the transmission of ROS signals. Reduction/oxidation (redox) changes in the glutathione (GSH) pool, glutaredoxins (GRXs), and thioredoxins (TRXs) are important in the control of growth mediated by phytohormone pathways. Although, it is clear that the redox states of proteins involved in plant growth and development are controlled by the NAD(P)H thioredoxin reductase (NTR)/TRX and reduced GSH/GRX systems of the cytosol, chloroplasts, mitochondria, and nucleus, we have only scratched the surface of this multilayered control and how redox-regulated processes interact with other cell signaling systems.

Oxygen and reactive oxygen species regulate plant growth, development, and differentiation through multiple interlinked signaling pathways.

Advances
  • Developmentally regulated hypoxia and reactive oxygen species (ROS) production are key features of the stem cell niches, providing information about stem cell position, the environment, and metabolic state.
  • Protein cysteine oxidation is central to oxygen and ROS signaling. However, S-nitrosylation, S-glutathionylation, S-sulfhydration, and S-sulfenylation modifications can occur on the same cysteine. The influence of each modification on stability, localization, and function remains unknown.
  • Numerous intersecting ROS signaling pathways are probable and likely depend on the site of ROS production and the nature of the oxidized receptor protein. ROS sensors such as the hydrogen peroxide (H2O2)-INDUCED Ca2+ INCREASES 1 (HPCA1) leucine rich receptor kinase translate redox signals into protein modifications to regulate signaling cascades. H2O2 perception/transduction is dependent on thiol-dependent mechanisms policed by the ferredoxin/thioredoxin (TRX), NAD(P)H TRX reductase C (NTRC), reduced glutathione (GSH), and glutaredoxin (GRX) systems.
  • ROS waves transmit redox signals from cell to cell in the apoplast, and probably through plasmodesmata. Long-distance transport of H2O2 and other ROS, therefore, appears to be unnecessary. Similarly, contact sites between organelles allow ROS transfer.
  • Convergence points for oxygen and ROS signaling occur on proteins such as ROH OF PLANT 2 (ROP2) GTPase,RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), and TRX-h to regulate meristematic activity via TARGET OF RAPAMYCIN (TOR) kinase activity.
  相似文献   

3.
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX–FTR–TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX–FTR–TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.

Thiol-dependent redox regulatory and antioxidant systems act concertedly to modulate chloroplast metabolism and signaling function.

Advances
  • Plant chloroplasts harbor a complex redox network composed of the FDX–FTR–TRXs pathway, linking redox regulation to light, and NTRC, an NADPH-dependent system required for the activity of TRXs. Both systems adjust chloroplast performance to environmental cues.
  • A relevant function of NTRC is redox control of 2-Cys PRXs, which maintains the reductive activity of chloroplast TRXs in the light. The NTRC–2-Cys PRXs redox system helps fine-tune the redox state of chloroplast enzymes thereby adjusting photosynthetic performance to changes in light.
  • 2-Cys PRXs participate in the rapid oxidative inactivation of chloroplast enzymes in the dark, mediating the transfer of reducing equivalents from reduced enzymes, via TRXs, to hydrogen peroxide.
  • Involvement of redox regulation in chloroplast retrograde signaling modulates early stages of plant development and response to environmental stress.
  相似文献   

4.
Protein cysteine residues are susceptible to oxidative modifications that can affect protein functions. Proteomic techniques that comprehensively profile the cysteine redoxome, the repertoire of oxidized cysteine residues, are pivotal towards a better understanding of the protein redox signaling. Recent technical advances in chemical tools and redox proteomic strategies have greatly improved selectivity, in vivo applicability, and quantification of the cysteine redoxome. Despite this substantial progress, still many challenges remain. Here, we provide an update on the recent advances in proteomic strategies for cysteine redoxome profiling, compare the advantages and disadvantages of current methods and discuss the outstanding challenges and future perspectives for plant redoxome research.

Current cysteine redoxome profiling can characterize systematically diverse oxidative posttranslational modifications

Advances
  • The chemical toolbox for Cys redoxome profiling has extensively expanded.
  • Advanced chemoproteomic platforms have been applied to target specific Cys oxidative posttranslational modifications (OxiPTMs).
  • Various reductomic workflows have been widely implemented for reversible Cys OxiPTMs quantification.
  • Workflows have been integrated to measure the occupancy of multiple OxiPTMs simultaneously.
  • Disulfide-based traps enable the in situ profiling for –SOH sites.
  相似文献   

5.
Genetically encoded biosensors pave the way for understanding plant redox dynamics and energy metabolism on cellular and subcellular levels.

ADVANCES
  • Methodological advances in fluorescent protein-based in vivo biosensing have been instrumental for several paradigm shifts in our understanding of cell physiology, metabolism and signaling.
  • An increasing number of genetically encoded biosensors has been used to dissect the dynamics of several distinct redox couples and energy physiology in plants.
  • In vivo monitoring using biosensors has pioneered the simultaneous read-out of different physiological parameters in different subcellular locations by parallelized plate reader-based, multiwell fluorimetry, or expression strategies for multiple sensors in parallel.
  • Sensing dynamic changes in hydrogen peroxide levels is possible with sensors of the HyPer family, or roGFP fusion variants with a thiol peroxidase.
  • Peredox and SoNar family sensors enable direct visualization of NADH/NAD+, while iNAP family sensors respond to NADPH concentration in plants.
  • Sensor variants with different sensitivity ranges enable use of the most appropriate variant for the specific in vivo environment or experimental scope.
  相似文献   

6.

Background

It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD). Mitochondria supply the adenosine triphosphate (ATP) needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT). The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC) enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT). Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2) for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined.

Results

The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM) was significantly reduced (p < 0.02) compared to mitochondrial movement in disease free CNT cybrid neuronal cells (0.232 +/- 0.017 SEM). For two hours after LLLT, the average velocity of mitochondrial movement in PD cybrid neurites was significantly (p < 0.003) increased (to 0.224 +/- 0.02 SEM) and restored to levels comparable to CNT. Mitochondrial movement in CNT cybrid neurites was unaltered by LLLT (0.232 +/- 0.017 SEM). Assembly of complexes in the mtETC was reduced and oxygen utilization was altered in PD cybrid neuronal cells. PD cybrid neuronal cell lines with the most dysfunctional mtETC assembly and oxygen utilization profiles were least responsive to LLLT.

Conclusion

The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.  相似文献   

7.
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.Subject terms: Post-translational modifications, Neurodegenerative diseases  相似文献   

8.
Parasitic plants pose a major biotic threat to plant growth and development and lead to losses in crop productivity of billions of USD annually. By comparison with “normal” autotrophic plants, parasitic plants live a heterotrophic lifestyle and rely on water, solutes and to a greater (holoparasitic plants) or lesser extent (hemiparasitic plants) on sugars from other host plants. Most hosts are unable to detect an infestation by plant parasites or unable to fend off these parasitic invaders. However, a few hosts have evolved defense strategies to avoid infestation or protect themselves actively post-attack often leading to full or partial resistance. Here, we review the current state of our understanding of the defense strategies to plant parasitism used by host plants with emphasis on the active molecular resistance mechanisms. Furthermore, we outline the perspectives and the potential of future studies that will be indispensable to develop and breed resistant crops.

Some plants are able to recognize parasitic plants as attacking pathogens and can fend them off by inducing defense responses.

Advances
  • Receptor proteins have been discovered in host plants (i.e. sunflower, tomato, or cowpea) that detect parasitic plants as an invading pathogen and further induce plant immunity and resistance responses in hosts leading to a parasite rejection.
  • Molecular patterns exist in parasitic plants that can be specifically detected by host plant receptors.
  • The host plant receptors require co-receptors and signaling components (i.e. BAK1, SOBIR1, etc.) also known from plant immunity against microbes.
  • Parasitic plants evolved strategies to circumvent and to suppress host plant immunity, i.e. by manipulating host cells with siRNAs or proteins that act as effectors.
  • Similar to the interaction of plants with microbial pathogens, elements of PTI and ETI can be both observed in plant–parasitic plant interactions.
  相似文献   

9.
Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.

Root parasitic plants grow on the roots of other plants and germinate only in the presence of that host, on which they completely depend, through the perception of host presence signaling molecules called germination stimulants.

Outstanding questions
  • Have we overlooked the role of germination stimulants in facultative parasites?
  • What is the biological relevance of the observation that many plant species produce and secrete a range of different strigolactones?
  • Have parasitic plants evolved mechanisms to compensate for low phosphorus availability, a condition that stimulates their germination?
  • What is the contribution of the HTL strigolactone receptors to host specificity in parasitic plants or does downstream signaling play a role?
  • What other, nonstrigolactone, germination stimulants can parasitic plants respond to and does this require adaptation in the HTL receptors?
  • What is the role of germination and underlying mechanism in the rapid adaptation of (orobanchaceous) parasitic plants to a new host?
  相似文献   

10.
Mutations in a mitochondrial or nuclear gene encoding respiratory chain complex I subunits lead to decreased or a total absence of complex I activity. Plant mutants with altered or lost complex I activity adapt their respiratory metabolism by inducing alternative pathways of the respiratory chain and changing energy metabolism. Apparently, complex I is a crucial component of the oxidation-reduction (redox) regulatory system in photosynthetic cells, and alternative NAD(P)H dehydrogenases of the mitochondrial electron transport chain (mtETC) cannot fully compensate for its impairment. In most cases, dysfunction of complex I is associated with lowered or unchanged hydrogen peroxide (H(2)O(2)) concentrations, but increased superoxide (O(2)(-)) levels. Higher production of reactive oxygen species (ROS) by mitochondria in the mosaic (MSC16) cucumber mutant may be related to retrograde signalling. Different effects of complex I dysfunction on H(2)O(2) and O(2)(-) levels in described mutants might result from diverse regulation of processes involved in H(2)O(2) and O(2)(-) production. Often, dysfunction of complex I did not lead to oxidative stress, but increased the capacity of the antioxidative system and enhanced stress tolerance. The new cellular homeostasis in mutants with dysfunction of complex I allows growth and development, reflecting the plasticity of plant metabolism.  相似文献   

11.
《PLoS biology》2021,19(4)
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.

This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.  相似文献   

12.
Parasitic plants are mostly viewed as pests. This is caused by several species causing serious damage to agriculture and forestry. There is however much more to parasitic plants than presumed weeds. Many parasitic plans exert even positive effects on natural ecosystems and human society, which we review in this paper. Plant parasitism generally reduces the growth and fitness of the hosts. The network created by a parasitic plant attached to multiple host plant individuals may however trigger transferring systemic signals among these. Parasitic plants have repeatedly been documented to play the role of keystone species in the ecosystems. Harmful effects on community dominants, including invasive species, may facilitate species coexistence and thus increase biodiversity. Many parasitic plants enhance nutrient cycling and provide resources to other organisms like herbivores or pollinators, which contributes to facilitation cascades in the ecosystems. There is also a long tradition of human use of parasitic plants for medicinal and cultural purposes worldwide. Few species provide edible fruits. Several parasitic plants are even cultivated by agriculture/forestry for efficient harvesting of their products. Horticultural use of some parasitic plant species has also been considered. While providing multiple benefits, parasitic plants should always be used with care. In particular, parasitic plant species should not be cultivated outside their native geographical range to avoid the risk of their uncontrolled spread and the resulting damage to ecosystems.

Advances
  • Parasitic plants may act as highways for transferring systemic signals among host plants.
  • Harmful effects of parasitic plants on individual hosts suppress community dominants including invasive species, reduce competitive pressure, and may increase biodiversity.
  • Parasitic plants enhance nutrient cycling and provide resources for other organisms thus contributing to facilitation cascades in ecosystems.
  • Many parasitic plants are recorded to have medicinal values against a broad range of diseases.
  • There is a long tradition of worldwide human use of parasitic plants, which have been cultivated for their products and aesthetic values.
  相似文献   

13.
Metabolic fluctuations in chloroplasts and mitochondria can trigger retrograde signals to modify nuclear gene expression. Mobile signals likely to be involved are reactive oxygen species (ROS), which can operate protein redox switches by oxidation of specific cysteine residues. Redox buffers, such as the highly reduced glutathione pool, serve as reservoirs of reducing power for several ROS-scavenging and ROS-induced damage repair pathways. Formation of glutathione disulfide and a shift of the glutathione redox potential (EGSH) toward less negative values is considered as hallmark of several stress conditions. Here we used the herbicide methyl viologen (MV) to generate ROS locally in chloroplasts of intact Arabidopsis (Arabidopsis thaliana) seedlings and recorded dynamic changes in EGSH and H2O2 levels with the genetically encoded biosensors Grx1-roGFP2 (for EGSH) and roGFP2-Orp1 (for H2O2) targeted to chloroplasts, the cytosol, or mitochondria. Treatment of seedlings with MV caused rapid oxidation in chloroplasts and, subsequently, in the cytosol and mitochondria. MV-induced oxidation was significantly boosted by illumination with actinic light, and largely abolished by inhibitors of photosynthetic electron transport. MV also induced autonomous oxidation in the mitochondrial matrix in an electron transport chain activity-dependent manner that was milder than the oxidation triggered in chloroplasts by the combination of MV and light. In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provides a basis for understanding how compartment-specific redox dynamics might operate in retrograde signaling and stress acclimation in plants.

Methyl viologen-induced photo-oxidative stress increases hydrogen peroxide and oxidation of glutathione in chloroplasts, cytosol, and mitochondria, as well as autonomous oxidation in mitochondria.  相似文献   

14.
15.
Mitochondrial redox biology and homeostasis in plants   总被引:1,自引:0,他引:1  
Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.  相似文献   

16.
  • Mitochondrial function is critical for cell vitality in all eukaryotes including plants. Although plant mitochondria contain many proteins, few have been studied in the context of plant development and physiology.
  • We used knock‐down mutant RPS9M to study its important role in male gametogenesis and seed development in Arabidopsis thaliana.
  • Knock‐down of RPS9M in the rps9m‐3 mutant led to abnormal pollen development and impaired pollen tube growth. In addition, both embryo and endosperm development were affected. Phenotype analysis revealed that the rps9m‐3 mutant contained a lower amount of endosperm and nuclear proteins, and both embryo cell division and embryo pattern were affected, resulting in an abnormal and defective embryo. Lowering the level of RPS9M in rps9m‐3 affects mitochondrial ribosome biogenesis, energy metabolism and production of ROS.
  • Our data revealed that RPS9M plays important roles in normal gametophyte development and seed formation, possibly by sustaining mitochondrial function.
  相似文献   

17.
Plant mitochondrial uncoupling proteins (pUCPs) play important roles in generation of metabolic thermogenesis, response to stress situation, and regulation of energy metabolism. Although the signaling pathways for the pUCPs-regulated plant energy metabolism and thermogenesis are well studied, the role of pUCPs in the regulation of plant stress tolerance has not been fully substantiated. Here we showed that mitochondrial uncoupling protein was required for effective antioxidant enzymes activities, chlorophyll fluorescence and redox poise in tomato under oxidative stress using virusinduced gene silencing approach. Silencing of LeUCP gene reduced maximal quantum yield of PSII (Fv/Fm) and photochemical quenching coefficient (qP), as well as mitigated activation of antioxidant enzymes and related genes expression. The content of reduced ascorbate and reduced glutathione, redox ratio of ascorbate and L-galactono-1,4-lactone dehydrogenase (GalLDH; EC 1.3.2.3) activity were all decreased in the leaves of LeUCP gene-silenced plant. However, malondialdehyde content was increased under methylviologen (MV) stress. ROS accumulation was increased significantly following MV and heat stress treatments. Meanwhile, LeUCP gene silencing aggravated accumulation of H2O2 and O 2 ·? in leaves. Taken together, these results strongly suggest that LeUCP gene plays critical role in maintaining the redox homeostasis and balance in antioxidant enzyme system under oxidative stress.  相似文献   

18.
Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.

A family of receptors that evolved in the Orobanchaceae family enable seeds of parasitic plants to sense strigolactones from a nearby host root and germinate.

Advances
  • Strigolactone perception by parasite seed is mediated by a clade of neofunctionalized KAI2d proteins that evolved from a receptor that mediates karrikin responses in other plants.
  • KAI2d proteins use a similar mechanism to perceive SLs as D14, which mediates growth responses to SLs in nonparasites, but activate different signaling pathways.
  • Crystal structure analyses and chemical probes reveal features of KAI2d ligand-binding pockets that contribute to their specificity.
  相似文献   

19.
20.
Photosynthesis is not only essential for plants, but it also sustains life on Earth. Phytohormones play crucial roles in developmental processes, from organ initiation to senescence, due to their role as growth and developmental regulators, as well as their central role in the regulation of photosynthesis. Furthermore, phytohormones play a major role in photoprotection of the photosynthetic apparatus under stress conditions. Here, in addition to discussing our current knowledge on the role of the phytohormones auxin, cytokinins, gibberellins, and strigolactones in promoting photosynthesis, we will also highlight the role of abscisic acid beyond stomatal closure in modulating photosynthesis and photoprotection under various stress conditions through crosstalk with ethylene, salicylates, jasmonates, and brassinosteroids. Furthermore, the role of phytohormones in controlling the production and scavenging of photosynthesis-derived reactive oxygen species, the duration and extent of photo-oxidative stress and redox signaling under stress conditions will be discussed in detail. Hormones have a significant impact on the regulation of photosynthetic processes in plants under both optimal and stress conditions, with hormonal interactions, complementation, and crosstalk being important in the spatiotemporal and integrative regulation of photosynthetic processes during organ development at the whole-plant level.

In addition to mediating stoma-induced reductions in photosynthesis during stress, phytohormones modulate the spatiotemporal and integrative regulation of photosynthetic and photoprotection processes.

Advances
  • Hormones strongly impact photosynthesis, both indirectly and directly.
  • Not only CKs, but also auxin, GAs, and SLs are essential to modulate photosynthetic rates under optimal conditions at the whole-plant level.
  • ABA, JAs, SA, and ethylene play a major role in the regulation of photosynthesis under various stress conditions.
  • An integrated hormonal response at the whole-plant level allows the most adequate photosynthetic response to every developmental and stress situation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号