首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Once adapted to the captive environment, mean minimum respiration rates were 118 mgO2 kg−1 h−1 for mackerel, body length ( b.l ) range 290 to 380 mm, at 11.1o C at a swimming speed of 0.6 b.l. s1 and 93 mgO2 kg−1 h1 for herring, length range 255 to 310 mm, at 9.3° C at a swimming speed of 0.3 b.l. s1.  相似文献   

2.
Burst swimming speeds of mackerel, Scomber scombrus L.   总被引:1,自引:0,他引:1  
Burst swimming speeds were measured in mackerel 0.275–0.380 m long by filming newly caught fish, first released into a large shore-sited tank, using a high-speed cine camera and real time TV camera. The highest speed was 5.50 m s−1 or 18 body length per second ( b.l . s−1) in a 0.305 m long mackerel at 12° C. The recorded maximum tail beat frequency of 18 Hz agrees well with 19 Hz predicted from the measured contraction time of 0.026 s for the anterior lateral swimming muscle. The stride length was close to 1 B.L.; the power, calculated from the drag, was 4.53 W, and, calculated from the muscle used, was 5.07 W; all suggesting that the mackerel is swimming close to its physiological limit.  相似文献   

3.
Abstract. Cyperus longus L. , which has a widespread but disjunct distribution throughout Europe and extends northwards into Britain, was found to be a C4 species based upon its Kranz leaf anatomy, low CO2 compensation point and the labelling of malate as an early product of 14CO2 fixation. The photosynthetic characteristics of C. longus are similar to many other C4 species with a high maximum rate of photosynthesis (> 1.5 mg CO2 m −2 s −1) and a relatively high temperature optimum (30–35°C), but unlike many C4 species the rate of photosynthesis does not decline rapidly below the optimum temperature and a substantial rate (0.6 mgCO2 m−2s−1)occursat 15°C. Leaf extension is very slow at 15°C and shows a curvilinear response to temperatures between 15 and 25°C. Leaves extend at a rate of almost 4 cm d−1 at 25°C.  相似文献   

4.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

5.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

6.
The endurance of threespine sticklebacks, Gasterosteus aculeatus , swimming with pectoral fin locomotion at 20° C in a laboratory flume was measured. Each trial lasted a maximum of 480 min. At a speed of 4 body lengths per sec (L s−1) all fish were still swimming at the end of the trial, but endurance decreased at higher speeds. At speeds of 5 or 6 L s−1 (20–30 cm s−1) a few fish still maintained labriform locomotion for the 480 min. However, at a speed of 7 L s−1 all fish furled their pectoral fins and used body and caudal fin propulsion but fatigued rapidly. During sustained swimming, fish could cover distances of 6 km or more. No significant differences between males and females were found.  相似文献   

7.
Negatively-buoyant Atlantic mackerel, Scomber scombrus L., (fork length 30–39 cm) tilt their bodies with the head up while swimming at speeds below 0.8 body length per second (B.L. s−1). This behaviour is quantitatively described by the body attack angle and swimming speed measured from film records. The maximum recorded body attack angle was 27° in a 32 cm-long fish swimming at 0.45 B.L. s−1 while its nose followed a course close to the horizontal. In general, larger body attack angles were shown at lower swimming speeds and were associated with denser bodies at each speed. We consider that this behaviour pattern allows the fish to maintain a chosen swimming depth while its body creates lift by acting as a hydrofoil. Lift from the fins is insufficient at low swimming speeds.  相似文献   

8.
Electromyogram (EMG) signals from two points at about 40% L and 65% L ( L = length) in the left latera1 muscle of mackerel ( Scomber scombrus L.) L = 28–33 cm a nd saithe ( Pollachius virens L.) L = 42–50 cm were recorded synchronously with films of steady straight swimming motions. In both species, the duration of EMG activity at both electrodes, remains a constant proportion of the tail cycle period Tat all the tail beat frequencies between 1–8 and 13 Hz. In mackerel and saithe respectively: onset of EMG activity at the front was 74% T and 77% T before the left-most tail blade position and fronl EMG-onset occurred 15% T and 18% T before rear onset. The duration of the EMG burst is longer at the front position (41% T and 47% T ) than at the rear (25% T and 27% T ), At all swimming speeds the wave of electrical activation of the muscle travelled between the two electrodes 25% L apart at a velocity between 1.5 and 1.6 L T −1. Frequencies of spikes within the burst of EMG activity rose from 30–40 Hz at 2 T s−1 to 50–80 Hz at 8 T s−1. In muscle at 40%L EMG-onset happens at phase 30° just after muscle strain at this point reaches its resting length while lengthening (360°). At 65% L EMG-onset occurs earlier in the strain cycle-350° just before the muscle reaches it resting length while lengthening (360°). This could represent within the length of the fish, a phase shift of up to 90° in the EMG-onset in relation to the muscle strain cycle. These timings are discussed in relation to optimized work output and a single instant of maximum bending moment all along the left side of the body.  相似文献   

9.
Sustained swimming performance of juvenile sprat, S. sprattus (29–48 mm s.l.), and herring, C. harengus (46–58 mm) was measured in a laboratory flume over a range of salinities from 18 to 33%0 at water temperatures of 16–19°C. Critical swimming speeds (CSS) of both species, relative to body length, were similar, averaging 10–12 body lengths per second (bl s−1). There was no apparent relationship with salinity.
These swimming speeds are higher than values generally quoted in the literature for sustained swimming of sprat and herring (2–7 bl s−1) and it is concluded that the better performance found in this study was a function of improved fish handling techniques, and of the size of fish used since most other studies have dealt with larger, commercial sized fish.  相似文献   

10.
Unfertilised cod eggs showed a mean oxygen uptake rate at 5°C of 0.089 μl O2, dry wt.−1 h−1; this gradually rose to 0.768 μl O2 mg dry wt.−1 h−1 in eggs about to hatch. From hatching to complete yolk absorption larvae respired at 1.6 μl O2, mg dry wt.−1 h−1. During starvation following yolk absorption, uptake fell significantly to 1.1 μl O2, mg dry −1 h−1. Much of this decrease in oxygen consumption was shown to be caused by reduction in activity. Loss of weight during the embryo and larval phases could not easily be reconciled with total oxygen consumption; it is suggested that cod embryos and larvae may not rely solely upon endogenous energy reserves during development.  相似文献   

11.
When swimming at low speeds, steelhead trout and bluegill sunfish tilted the body at an angle to the mean swimming direction. Trout swam using continuous body/caudal fin undulation, with a positive (head-up) tilt angle ( 0 , degrees) that decreased with swimming speed ( u , cm s−1) according to: 0 =(164±96).u(−1.14±0.41) (regression coefficients; mean±2 s.e. ). Bluegill swimming gaits were more diverse and negative (head down) tilt angles were usual. Tilt angle was −3·0 ± 0.9° in pectoral fin swimming at speeds of approximately 0.2–1.7 body length s−1 (Ls−1; 3–24 cm s−1), −4.5 ±2.6° during pectoral fin plus body/caudal fin swimming at 1·2–1·7 L s−1 (17–24cm s−1), and −5.0± 1.0° during continuous body/caudal fin swimming at 1.6 and 2.5 L s−1 (22 and 35cm s−1). At higher speeds, bluegill used burst-and-coast swimming for which the tilt angle was 0.1±0.6°. These observations suggest that tilting is a general phenomenon of low speed swimming at which stabilizers lose their effectiveness. Tilting is interpreted as an active compensatory mechanism associated with increased drag and concomitant increased propulsor velocities to provide better stabilizing forces. Increased drag associated with trimming also explains the well-known observation that the relationship between tail-beat frequency and swimming speed does not pass through the origin. Energy dissipated because of the drag increases at low swimming speeds is presumably smaller than that which would occur with unstable swimming.  相似文献   

12.
Effect of temperature on swimming performance of sea bass juveniles   总被引:1,自引:0,他引:1  
At four temperatures ( T= 15, 20, 25 and 28° C) swimming performance of Dicentrarchus labrax was significantly correlated with total length (23–43 mm L T); r2=0.623–0.829). The relative critical swimming speed ( RU crit= U crit L T−1), where U crit is the critical swimming speed, was constant throughout the L T range studied. The significant effect of temperature on the relative critical swimming speed was described binomially: RU crit=−0.0323T2+ 1.578 T −10.588 (r2=1). The estimated maximum RU crit (8.69 L T s−1) was achieved at 24.4° C, and the 90% performance level was estimated between 19.3 and 29.6° C.  相似文献   

13.
To determine the relation between swimming endurance time and burst swimming speed, elvers of the European eel, Anguilla anguilla (L.), were made to swim at speeds from 3.6 to 7.2 L (body lengths) s−1 in both fresh and sea water. Swimming endurance time of elvers averaging 7.2 cm total length decreased logarithmically with increased swimming speed from 3.0 min at 3.5 L s−1 to 0.7 min at 5.0 L s−1, and again logarithmically but with a lesser slope to 0.27 min at 7.5 L s−1. No differences were found between fresh and sea water elvers. In still water, elvers could swim at high speeds for about 10–45m before exhaustion, depending upon speed. Elvers would be able to make virtually no progress against water currents >50 cm s−1. Drift in coastal water currents and selective tidal transport probably involve swimming speeds below those tested in this study. Migration into freshwater streams undoubtedly involves avoidance of free stream speeds and a combination of burst and sustained swimming.  相似文献   

14.
A flow-through respirometer and swim tunnel was used to estimate the gait transition speed ( U p-c) of striped surfperch Embiotoca lateralis , a labriform swimmer, and to investigate metabolic costs associated with gait transition. The U p-c was defined as the lowest speed at which fish decrease the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s−1, L F s−1) was rare (<10% of the total time). Tail movements at these low speeds appeared to be associated with occasional slow manoeuvres rather than providing power. As speed was increased beyond U p-c, pectoral fin (PF) frequencies kept increasing when the tail was not used, while they did not when PF locomotion was aided by the tail. At these high speeds, the tail was employed for 40–50% of the time, either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport ( C T) decreased with increasing speed, and then levelled off near U p-c. When speeds ≥ U p-c are considered, C T is higher than the theoretical curve extrapolated for PF swimming, suggesting that PF swimming appears to be higher energetically less costly than undulatory swimming using the tail.  相似文献   

15.
Pearl Danios (Brachydanio albolineatus –Blyth) were allowed four days for acclimation in river-water filled aquaria maintained at a mean temperature of 27° C. A different concentration of DL-thyroxine (T4) was added to each of two aquaria. A third aquarium served as a control and received no hormone. Photoperiod, feeding, aeration, and observer interference were controlled so as not to influence the results of the study. Mean swimming speeds for the fish in each aquarium were calculated. Data were subjected to analysis of variance and the Student-Newman-Keuls Test. Compared with the control, significant (P < 0.05) increases in swimming speed were found with concentrations of thyroxine in water of 1:4x 106 and 1:1 x 106. The difference in swimming speed between the two hormone-treated groups was not significant. The fact that exogenous thyroxine will increase swimming speed may indicate that endogenous thyroid hormone plays a significant role in such fish behaviour as migration.  相似文献   

16.
Samples from a natural population of pike (Esox lucius L.) from the River Danube were used in a 12-month study to determine seasonal variations in biochemical parameters of pike blood sera, hepatosomatic index (HSI) and gonadosomatic index (GSI). The ranges of enzyme activities for sample means were: aspartate aminotransferase (ASAT) 252.0–583.8 U 1−1, alanine aminotransferase (ALAT) 4.9–11 -2 U1 and alkaline phosphatase (AP) 39.5–91.8 U1−1. The ranges of other parameters analysed in serum were total protein 27.7–40.1 g 1 1, urea 0.57–l.52 mmol 1 1 and creatinine 21.2–118.6 μmol 1 1. The range of sample means for HSI and GSI were 1.28–4.16 and 0.07–20.2 respectively. Temperature ranged from 4.5 to 23.5°C. The activity of serum AP was positively correlated to water temperature in males only, while urea and creatinine showed a positive correlation to water temperature in individuals of both sexes. GSI was correlated significantly with HSI in females. Total protein reached the lowest values during the spawning period, while creatinine levels depended on both the sex and season.  相似文献   

17.
The schooling behaviour of Atlantic mackerel was studied in a large tank at different light intensities in the range 12.6–1.8 × 10−10μEs−1 m−2. Variable light intensity was produced by accurately controlling the current to a green light-emitting diode (LED) 3 m above the experimental tank. Under high light levels (1.8 × 10−6μEs−1 m−2) mackerel always formed a single school, whereas at lower levels (1.8 × 10−8μEs−1 m−2) they swam as individuals. At light levels down to 1.0 × 10−6μEs−1 m−2 the mean nearest neighbour distance in a school remained relatively constant (0.3–0.9 body lengths), and individual mackerel swam along a path which deviated from the position of their nearest neighbours by less than 14°. As light dropped below 1.8 × 10−7μEs−1 m−2, both nearest neighbour distance and heading angle between nearest neighbours increased, with mean values of 1–1.8 body lengths and 23–92°, respectively, at 1.8 × 10−9μEs−1 m−2. The results are discussed in terms of ambient light conditions in the sea.  相似文献   

18.
Abstract Suspensions of maltose-grown cells of the hyperthermophilic archaeon Pyrococcus furiosus , when incubated at 90°C with 35 mM [1-13C]glucose or [3-13C]glucose, consumed glucose at a rate of about 10 nmol min−1 (mg protein)−1. Acetate (10 mM), alanine (3 mM), CO2 and H2 were the fermentation products. The 13C-labelling pattern in alamine and acetate were analyzed. With [1-13C]glucose the methyl group of both alanine and acetate was labelled; with [3-13C]glucose only the carboxyl group of alanine was labelled whereas acetate was unlabelled. Extracts of maltose-grown cells contained glucose isomerase (12.8 U mg−1, 100°C), ketohexokinase (0.23 U mg−1, 100°C), and fructose 1-phosphate aldolase (0.06 U mg−1, 100°C). Enzymes catalyzing the formation of fructose 1,6-bisphosphate from fructose 1-phosphate or fructose 6-phosphate could not be detected. As publihed previously by our group and other authors P. furiosus also contains enzymes of glyceraldehyde conversion to 2-phosphoglycerate according to a non-phosphorylated Entner-Doudoroff pathway, of dihydroxyacetone phosphate conversion to 2-phosphoglycerate according to the Embden-Meyerhof pathway, and of 2-phosphoglycerate conversion - via pyruvate - to acetate and alanine. Based on the enzyme activities in P. furiosus , the following pathway for glucose degradation to alanine and acetate in cell suspensions is proposed which can explain the [13C]glucose labelling data: glucose→ fructose → fructose 1- phosphate → dihydroxyacetone phosphate + glyceraldehyde and further conversion of both trioses to alanine and acetate via pyruvate.  相似文献   

19.
Sustained swimming of bluefin tuna was analysed from video recordings made of a captive patrolling fish school [lengths (L) 1.7–3.3 m, body mass (M) 54–433 kg]. Speeds ranged from 0.6 to 1.2 L s−1 (86–260 km day−1) while stride length during steady speed swimming varied between 0.54 and 0.93 L. Maximum swimming speed was estimated by measuring twitch contraction of the anaerobic swimming muscle in pithed fish 5 min after death. Muscle contraction time increased from the shortest just behind the head (30–50 ms at 20% L) to the longest at the tail peduncle (80–90 ms at 80% L) (all at 28°C). A fish (L = 2.26 m) with a muscle contraction time of 50 ms at 25% L can have a maximum tail beat frequency of 10 Hz and maximum swimming speed of 15m s−1 (54km h−1) with a stride length of 0.65L. With a stride length of 1 L a speed of 22.6 m s−1 (81.4 km h−1) is possible. Power used at maximum speed was estimated for this fish at between 10 and 40 kW, with corresponding values for the drag coefficient at a Reynolds number of 4.43 × 107 of 0.0007 and 0.0027.  相似文献   

20.
SUMMARY. The oxygen consumption of shrimps ranging from 1 to 30 mg dry mass was determined at 18, 24 and 30°C using a continuous flow recording respirometer based upon a Clark-type oxygen electrode. Respiration (ascribed to routine metabolism) is described by the power curve: R = a Mb , ( R =μg O2 h−1, M = mg dry mass), which gives values of a = 1.632, 2.564 and 4.181, and b = 0.800, 0.898, and 0.793, at 18, 24 and 30°C respectively. The single expression, R = 0.008 T 1.829 M 0.830 provides a reasonable prediction of respiration as a combined function of shrimp size ( M ) and temperature (T, °C). Using an energy equivalent of 14.14 J mg O2−1 estimates of the energy requirements ( E , J h−1 10−3) of routine metabolism are given by the expression: E = 0.115 T 1.829 M 0.830.
Variability in oxygen consumption values between individuals is discussed and the observations on C. nilotica are compared with other crustacean studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号