首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Drosophila larvae and adult pacemaker neurons both express free‐running oscillations of period (PER) and timeless (TIM) proteins that constitute the core of the cell‐autonomous circadian molecular clock. Despite similarities between the adult and larval molecular oscillators, adults and larvae differ substantially in the complexity and organization of their pacemaker neural circuits, as well as in behavioral manifestations of circadian rhythmicity. We have shown previously that electrical silencing of adult Drosophila circadian pacemaker neurons through targeted expression of either an open rectifier or inward rectifier K+ channel stops the free‐running oscillations of the circadian molecular clock. This indicates that neuronal electrical activity in the pacemaker neurons is essential to the normal function of the adult intracellular clock. In the current study, we show that in constant darkness the free‐running larval pacemaker clock—like that of the adult pacemaker neurons they give rise to—requires membrane electrical activity to oscillate. In contrast to the free‐running clock, the molecular clock of electrically silenced larval pacemaker neurons continues to oscillate in diurnal (light–dark) conditions. This specific disruption of the free‐running clock caused by targeted K+ channel expression likely reflects a specific cell‐autonomous clock‐membrane feedback loop that is common to both larval and adult neurons, and is not due to blocking pacemaker synaptic outputs or disruption of pacemaker neuronal morphology. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

2.
3.
Mazzoni EO  Desplan C  Blau J 《Neuron》2005,45(2):293-300
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The Drosophila larval visual system, Bolwig's organ (BO), projects to larval pacemaker neurons to entrain their clock. BO also mediates larval photophobic behavior. We found that ablation or electrical silencing of larval pacemaker neurons abolished light avoidance. Thus, circadian pacemaker neurons receive input from BO not only to reset the clock but also to transmit rapid photophobic signals. Furthermore, as clock gene mutations also affect photophobicity, the pacemaker neurons modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity.  相似文献   

4.
5.
Phases of circadian locomotor activity rhythms of adult Drosophila reared in constant darkness have been shown to be set by a light stimulus delivered as early as the first-instar larval stage. This implies that a circadian clock functions continuously throughout postembryonic development. The clock genes period (per) and timeless (tim) are expressed cyclically in the larval central nervous system of Drosophila, and daily oscillations of per expression persist throughout metamorphosis in a group of cells, which gives rise to the pacemaker cells underlying locomotor activity rhythms of adults. Therefore, PER and TIM cyclings in these neurons may be responsible for the phenomenon of "larval time-memory." In the absence of any evidence for the involvement of these genes in such a developmental clock, and because circadian-pacemaker functions are underanalyzed in terms of the functions during development, the authors tested the time-memory of a fast-clock period mutant. They show that dark-reared perS mutant individuals as well as wild-type flies can be entrained as larvae and that a brief light pulse given to such entrained larvae can induce phase shifts in animals of either genotype. However, the direction and magnitude of phase shifts were different between wild type and perS, suggesting that a clock under the control of period gene participates in the regulation of developmental time-memory. The authors show that the relevant clock can be entrained by two light input pathways, one involving the phospholipase C encoded by the norpA gene, the other mediated by the blue-light receptor cryptochrome. Phase shifts of molecular oscillations during the larval stage were smaller than those measured by adult behavior, suggesting molecularly transient responses during development.  相似文献   

6.
Cycling vrille expression is required for a functional Drosophila clock   总被引:6,自引:0,他引:6  
Blau J  Young MW 《Cell》1999,99(6):661-671
  相似文献   

7.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect.  相似文献   

8.
Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species.  相似文献   

9.
10.
An intricate neural circuit composed of multiple classes of clock neurons controls circadian locomotor rhythms in Drosophila. Evidence indicates that the small ventral lateral neurons (s-LNvs, M cells) are the dominant pacemaker neurons that synchronize the clocks throughout the circuit and drive free-running locomotor rhythms. Little is known, however, about the molecular underpinning of this unique function of the s-LNvs. Here, we show that the nuclear receptor gene unfulfilled (unf; DHR51) is required for the function of the s-LNvs. UNFULFILLED (UNF) is rhythmically expressed in the s-LNvs, and unf mutant flies are behaviorally arrhythmic. Knockdown of unf in developing LNvs irreversibly destroys the ability of adult s-LNvs to generate free-running rhythms, whereas depletion of UNF from adult LNvs dampens the rhythms of the s-LNvs only in constant darkness. These temporally controlled LNv-targeted unf knockdowns desynchronize circuit-wide molecular rhythms and disrupt behavioral rhythms. Therefore, UNF is a prerequisite for free-running clocks in the s-LNvs and for the function of the entire circadian circuit.  相似文献   

11.
12.
13.
Circadian clocks include control systems for organizing daily behavior. Such a system consists of a time-keeping mechanism (the clock or pacemaker), input pathways for entraining the clock, and output pathways for producing overt rhythms in behavior and physiology. In Drosophila melanogaster, as in mammals, neural circuits play vital roles in all three functional subdivisions of the circadian system. Regarding the pacemaker, multiple clock neurons, each with cell-autonomous pacemaker capability, are coupled to each other in a network. The outputs of different sets of clock neurons in this network combine to produce the normal bimodal pattern of locomotor activity observed in Drosophila. Regarding input, multiple sensory modalities (including light, temperature, and pheromones) use their own circuitry to entrain the clock. Regarding output, distinct circuits are likely involved for controlling the timing of eclosion and for generating the locomotor activity rhythms. This review summarizes work on all of these circadian circuits, and discusses the broader utility of studying the fly's circadian system.  相似文献   

14.
Two clock-controlled processes, overt circadian rhythmicity and the photoperiodic induction of diapause, are described in the blow fly,Calliphora vicina and the fruit fly,Drosophila melanogaster. Circadian locomotor rhythms of the adult flies reflect endogenous, self-sustained oscillations with a temperature compensated period. The free-running rhythms become synchronised (entrained) to daily light:dark cycles, but become arrhythmic in constant light above a certain intensity. Some flies show fragmented rhythms (internal desynchronisation) suggesting that overt rhythmicity is the product of a multioscillator (multicellular) system. Photoperiodic induction of larval diapause inC. vicina and of ovarian diapause inD. melanogaster is also based on the circadian system but seems, to involve a separate mechanism at both the molecular and neuronal levels. For both processes in both species, the compound eyes and ocelli are neither essential nor necessary for photic entrainment, and the circadian clock mechanism is not within the optic lobes. The central brain is the most likely site for both rhythm generation and extra-optic photoreception. InD. melanogaster, a group of lateral brain neurons has been identified as important circadian pacemaker cells, which are possibly also photo-sensitive. Similar lateral brain neurons, staining for arrestin, a protein in the phototransduction ‘cascade’ and a selective marker for photoreceptors in both vertebrates and invertebrates, have been identified inC. vicina. Much less is known about the cellular substrate of the photoperiodic mechanism, but this may involve thepars intercerebralis region of the mid-brain.  相似文献   

15.
Neurobiology of the fruit fly's circadian clock   总被引:7,自引:0,他引:7  
Studying the fruit fly Drosophila melanogaster has revealed mechanisms underlying circadian clock function. Rhythmic behavior could be assessed to the function of several clock genes that generate circadian oscillations in certain brain neurons, which finally modulate behavior in a circadian manner. This review outlines how individual circadian pacemaker neurons in the fruit fly's brain control rhythm in locomotor activity and eclosion.  相似文献   

16.
In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed role of PDF as a synchronizer of the clock system or as an output signal connecting pacemaker cells to locomotor activity centers. In this study, the authors use a generic neuropeptide fusion protein (atrial natriuretic factor-green fluorescent protein [ANF-GFP]) and show that it can be expressed in the same neurons as PDF itself. Yet, ANF-GFP as well as PDF itself does not manifest any cyclical accumulation in sLNv termini in adult transgenic flies. Surprisingly, the absence of detectable PDF cycling is not accompanied by any detectable behavioral pheno-type, since these transgenic flies have normal morning and evening anticipation in a light-dark cycle (LD) and are fully rhythmic in constant darkness (DD). The molecular clock is also not compromised. The results suggest that robust PDF cycling in sLNv termini plays no more than a minor role in the Drosophila circadian system and is apparently not even necessary for clock output function.  相似文献   

17.
An intriguing property of circadian clocks is that their free-running period is not exactly 24h. Using models for circadian rhythms in Neurospora and Drosophila, we determine how the entrainment of these rhythms is affected by the free-running period and by the amplitude of the external light-dark cycle. We first consider the model for Neurospora, in which light acts by inducing the expression of a clock gene. We show that the amplitude of the oscillations of the clock protein entrained by light-dark cycles is maximized when the free-running period is smaller than 24h. Moreover, if the amplitude of the light-dark cycle is very strong, complex oscillations occur when the free-running period is close to 24h. In the model for circadian rhythms in Drosophila, light acts by enhancing the degradation of a clock protein. We show that while the amplitude of circadian oscillations entrained by light-dark cycles is also maximized if the free-running period is smaller than 24h, the range of entrainment is centered around 24h in this model. We discuss the physiological relevance of these results in regard to the setting of the free-running period of the circadian clock.  相似文献   

18.
Luo W  Chen WF  Yue Z  Chen D  Sowcik M  Sehgal A  Zheng X 《Aging cell》2012,11(3):428-438
Sleep-wake cycles break down with age, but the causes of this degeneration are not clear. Using a Drosophila model, we addressed the contribution of circadian mechanisms to this age-induced deterioration. We found that in old flies, free-running circadian rhythms (behavioral rhythms assayed in constant darkness) have a longer period and an unstable phase before they eventually degenerate. Surprisingly, rhythms are weaker in light-dark cycles and the circadian-regulated morning peak of activity is diminished under these conditions. On a molecular level, aging results in reduced amplitude of circadian clock gene expression in peripheral tissues. However, oscillations of the clock protein PERIOD (PER) are robust and synchronized among different clock neurons, even in very old, arrhythmic flies. To improve rhythms in old flies, we manipulated environmental conditions, which can have direct effects on behavior, and also tested a role for molecules that act downstream of the clock. Coupling temperature cycles with a light-dark schedule or reducing expression of protein kinase A (PKA) improved behavioral rhythms and consolidated sleep. Our data demonstrate that a robust molecular timekeeping mechanism persists in the central pacemaker of aged flies, and reducing PKA can strengthen behavioral rhythms.  相似文献   

19.
A single light episode during the first larval stage can set the phase of adult Drosophila activity rhythms, showing that a light-sensitive circadian clock is functional in larvae and is capable of keeping time throughout development. These behavioral data are supported by the finding that neurons expressing clock proteins already exist in the larval brain and appear to be connected to the larval visual system. To define the photoreceptive pathways of the larval clock, the authors investigated circadian synchronization during larval stages in various visual systems and/or cryptochrome-defective strains. They show that adult activity rhythms cannot be entrained by light applied to larvae lacking both cryptochrome and the visual system, although such rhythms were entrained by larval stage-restricted temperature cycles. Larvae lacking either pathway alone were light entrainable, but the phase of the resulting adult rhythm was advanced relative to wild-type flies. Unexpectedly, adult behavioral rhythms of the glass60j and norpAP24 visual system mutants that were entrained in the same conditions were found to be severely impaired, in contrast to those of the wild type. Extension of the entrainment until the adult stage restored close to wild-type behavioral rhythms in the mutants. The results show that both cryptochrome and the larval visual system participate to circadian photoreception in larvae and that mutations affecting the visual system can impair behavioral rhythmicity.  相似文献   

20.
Hodge JJ  Stanewsky R 《PloS one》2008,3(5):e2274

Background

In addition to the molecular feedback loops, electrical activity has been shown to be important for the function of networks of clock neurons in generating rhythmic behavior. Most studies have used over-expression of foreign channels or pharmacological manipulations that alter membrane excitability. In order to determine the cellular mechanisms that regulate resting membrane potential (RMP) in the native clock of Drosophila we modulated the function of Shaw, a widely expressed neuronal potassium (K+) channel known to regulate RMP in Drosophila central neurons.

Methodology/Principal Findings

We show that Shaw is endogenously expressed in clock neurons. Differential use of clock gene promoters was employed to express a range of transgenes that either increase or decrease Shaw function in different clusters of clock neurons. Under LD conditions, increasing Shaw levels in all clock neurons (LNv, LNd, DN1, DN2 and DN3), or in subsets of clock neurons (LNd and DNs or DNs alone) increases locomotor activity at night. In free-running conditions these manipulations result in arrhythmic locomotor activity without disruption of the molecular clock. Reducing Shaw in the DN alone caused a dramatic lengthening of the behavioral period. Changing Shaw levels in all clock neurons also disrupts the rhythmic accumulation and levels of Pigment Dispersing Factor (PDF) in the dorsal projections of LNv neurons. However, changing Shaw levels solely in LNv neurons had little effect on locomotor activity or rhythmic accumulation of PDF.

Conclusions/Significance

Based on our results it is likely that Shaw modulates pacemaker and output neuronal electrical activity that controls circadian locomotor behavior by affecting rhythmic release of PDF. The results support an important role of the DN clock neurons in Shaw-mediated control of circadian behavior. In conclusion, we have demonstrated a central role of Shaw for coordinated and rhythmic output from clock neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号