首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.  相似文献   

2.
Winey M  Bloom K 《Genetics》2012,190(4):1197-1224
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.  相似文献   

3.
In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)-cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Delta cells maintained Bud6p-dependent MT capture. Conversely, bud6Delta cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Delta kar9Delta or bud6Delta dyn1Delta mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Delta mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables.  相似文献   

4.
In budding yeast, spindle polarity relies on a precise temporal program of cytoplasmic microtubule-cortex interactions throughout spindle assembly. Loss of Clb5-dependent kinase activity under conditions of attenuated Cdc28 function disrupts this program, resulting in diploid-specific lethality. Here we show that polarity loss is tolerated by haploids due to a more prominent contribution of microtubule-neck interactions to spindle orientation inherent to haploids. These differences are mediated by the relative partition of Bud6 between the bud tip and bud neck, distinguishing haploids from diploids. Bud6 localizes initially to the bud tip and accumulates at the neck concomitant with spindle assembly. bud6Delta mutant phenotypes are consistent with Bud6's role as a cortical cue for cytoplasmic microtubule capture. Moreover, mutations that affect Bud6 localization and partitioning disrupt the sequential program of microtubule-cortex interactions accordingly. These data support a model whereby Bud6 sequentially cues microtubule capture events at the bud tip followed by capture events at the bud neck, necessary for correct spindle morphogenesis and polarity.  相似文献   

5.
Spindle orientation is critical for accurate chromosomal segregation in eukaryotic cells. In the yeast Saccharomyces cerevisiae, orientation of the mitotic spindle is achieved by a program of microtubule-cortex interactions coupled to spindle morphogenesis. We previously implicated Bud6p in directing microtubule capture throughout this program. Herein, we have analyzed cells coexpressing GFP:Bud6 and GFP:Tub1 fusions, providing a kinetic view of Bud6p-microtubule interactions in live cells. Surprisingly, even during the G1 phase, microtubule capture at the recent division site and the incipient bud is dictated by Bud6p. These contacts are eliminated in bud6 delta cells but are proficient in kar9 delta cells. Thus, Bud6p cues microtubule capture, as soon as a new cell polarity axis is established independent of Kar9p. Bud6p increases the duration of interactions and promotes distinct modes of cortical association within the bud and neck regions. In particular, microtubule shrinkage and growth at the cortex rarely occur away from Bud6p sites. These are the interactions selectively impaired at the bud cortex in bud6 delta cells. Finally, interactions away from Bud6p sites within the bud differ from those occurring at the mother cell cortex, pointing to the existence of an independent factor controlling cortical contacts in mother cells after bud emergence.  相似文献   

6.
Saccharomyces cerevisiae cnm67Delta cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein-labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the gamma-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Delta cells Spc72-gamma-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Delta cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.  相似文献   

7.
Positioning of the mitotic spindle is crucial for proper cell division. In the budding yeast Saccharomyces cerevisiae, two mechanisms contribute to spindle positioning. In the Kar9 pathway, astral microtubules emanating from the daughter-bound spindle pole body interact via the linker protein Kar9 with the myosin Myo2, which moves the microtubule along the actin cables towards the neck. In the dynein pathway, astral microtubules off-load dynein onto the cortical anchor protein Num1, which is followed by dynein pulling on the spindle. Yet, the mechanism by which microtubules target cortical anchor sites is unknown. Here we quantify the pivoting motion of astral microtubules around the spindle pole bodies, which occurs during spindle translocation towards the neck and through the neck. We show that this pivoting is largely driven by the Kar9 pathway. The microtubules emanating from the daughter-bound spindle pole body pivot faster than those at the mother-bound spindle pole body. The Kar9 pathway reduces the time needed for an astral microtubule inside the daughter cell to start pulling on the spindle. Thus, we propose a new role for microtubule pivoting: By pivoting around the spindle pole body, microtubules explore the space laterally, which helps them search for cortical anchor sites in the context of spindle positioning in budding yeast.  相似文献   

8.
Yeast spindle pole bodies (SPBs) duplicate once per cell cycle by a conservative mechanism resulting in a pre-existing 'old' and a newly formed SPB. The two SPBs of yeast cells are functionally distinct. It is only the SPB that migrates into the daughter cell, the bud, which carries the Bfa1p-Bub2p GTPase-activating protein (GAP) complex, a component of the spindle positioning checkpoint. We investigated whether the functional difference of the two SPBs correlates with the time of their assembly. We describe that in unperturbed cells the 'old' SPB always migrates into the bud. However, Bfa1p localization is not determined by SPB inheritance. It is the differential interaction of cytoplasmic microtubules with the mother and bud cortex that directs the Bfa1p-Bub2p GAP to the bud-ward-localized SPB. In response to defects of cytoplasmic microtubules to interact with the cell cortex, the Bfa1p-Bub2p complex binds to both SPBs. This may provide a mechanism to delay cell cycle progression when cytoplasmic microtubules fail to orient the spindle. Thus, SPBs are able to sense cytoplasmic microtubule properties and regulate the Bfa1p-Bub2p GAP accordingly.  相似文献   

9.
Nuclear migration and positioning in Saccharomyces cerevisiae depend on long astral microtubules emanating from the spindle pole bodies (SPBs). Herein, we show by in vivo fluorescence microscopy that cells lacking Spc72, the SPB receptor of the cytoplasmic gamma-tubulin complex, can only generate very short (<1 microm) and unstable astral microtubules. Consequently, nuclear migration to the bud neck and orientation of the anaphase spindle along the mother-bud axis are absent in these cells. However, SPC72 deletion is not lethal because elongated but misaligned spindles can frequently reorient in mother cells, permitting delayed but otherwise correct nuclear segregation. High-resolution time-lapse sequences revealed that this spindle reorientation was most likely accomplished by cortex interactions of the very short astral microtubules. In addition, a set of double mutants suggested that reorientation was dependent on the SPB outer plaque and the astral microtubule motor function of Kar3 but not Kip2/Kip3/Dhc1, or the cortex components Kar9/Num1. Our observations suggest that Spc72 is required for astral microtubule formation at the SPB half-bridge and for stabilization of astral microtubules at the SPB outer plaque. In addition, our data exclude involvement of Spc72 in spindle formation and elongation functions.  相似文献   

10.
M Knop  G Pereira  S Geissler  K Grein    E Schiebel 《The EMBO journal》1997,16(7):1550-1564
Previously, we have shown that the gamma-tubulin Tub4p and the spindle pole body component Spc98p are involved in microtubule organization by the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC97 encoding an essential SPB component that is in association with the SPB substructures that organize the cytoplasmic and nuclear microtubules. Evidence is provided for a physical and functional interaction between Tub4p, Spc98p and Spc97p: first, temperature-sensitive spc97(ts) mutants are suppressed by high gene dosage of SPC98 or TUB4. Second, Spc97p interacts with Spc98p and Tub4p in the two-hybrid system. Finally, immunoprecipitation and fractionation studies revealed complexes containing Tub4p, Spc98p and Spc97p. Further support for a direct interaction of Tub4p, Spc98p and Spc97p comes from the toxicity of strong SPC97 overexpression which is suppressed by co-overexpression of TUB4 or SPC98. Analysis of temperature-sensitive spc97(ts) alleles revealed multiple spindle defects. While spc97-14 cells are either impaired in SPB separation or mitotic spindle formation, spc97-20 cells show an additional defect in SPB duplication. We discuss a model in which the Tub4p-Spc98p-Spc97p complex is part of the microtubule attachment site at the SPB.  相似文献   

11.
The spindle position checkpoint in Saccharomyces cerevisiae delays mitotic exit until the spindle has moved into the mother-bud neck, ensuring that each daughter cell inherits a nucleus. The small G protein Tem1p is critical in promoting mitotic exit and is concentrated at the spindle pole destined for the bud. The presumed nucleotide exchange factor for Tem1p, Lte1p, is concentrated in the bud. These findings suggested the hypothesis that movement of the spindle pole through the neck allows Tem1p to interact with Lte1p, promoting GTP loading of Tem1p and mitotic exit. However, we report that deletion of LTE1 had little effect on the timing of mitotic exit. We also examined several mutants in which some cells inappropriately exit mitosis even though the spindle is within the mother. In some of these cells, the spindle pole body did not interact with the bud or the neck before mitotic exit. Thus, some alternative mechanism must exist to coordinate mitotic exit with spindle position. In both wild-type and mutant cells, mitotic exit was preceded by loss of cytoplasmic microtubules from the neck. Thus, the spindle position checkpoint may monitor such interactions.  相似文献   

12.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

13.
Control of spindle polarity and orientation in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Control of mitotic spindle orientation represents a major strategy for the generation of cell diversity during development of metazoans. Studies in the budding yeast Saccharomyces cerevisiae have contributed towards our present understanding of the general principles underlying the regulation of spindle positioning in an asymmetrically dividing cell. In S. cerevisiae, the mitotic spindle must orient along the cell polarity axis, defined by the site of bud emergence, to ensure correct nuclear division between the mother and daughter cells. Establishment of spindle polarity dictates this process and relies on the concerted control of spindle pole function and a precise program of cues originating from the cell cortex that directs cytoplasmic microtubule attachments during spindle morphogenesis. These cues cross talk with the machinery responsible for bud-site selection, indicating that orientation of the spindle in yeast cells is mechanistically coupled to the definition of a polarity axis and the division plane. Here, we propose a model integrating the inherently asymmetric properties of the spindle pathway with the program of positional information contributing towards orienting the spindle in budding yeast. Because the basic machinery orienting the spindle in higher-eukaryotic cells appears to be conserved, it might be expected that similar principles govern centrosome asymmetry in the course of metazoan development.  相似文献   

14.
gamma-Tubulin is a conserved component of microtubule-organizing centers and is thought to be involved in microtubule nucleation. A recently discovered Saccharomyces cerevisiae gene (TUB4) encodes a tubulin that is related to, but divergent from, gamma-tubulins. TUB4 is essential for cell viability, and epitope-tagged Tub4 protein (Tub4p) is localized to the spindle pole body (Sobel, S.G., and M. Snyder. 1995.J. Cell Biol. 131:1775-1788). We have characterized the expression of TUB4, the association of Tub4p with the spindle pole body, and its role in microtubule organization. Tub4p is a minor protein in the cell, and expression of TUB4 is regulated in a cell cycle-dependent manner. Wild-type Tub4p is localized to the spindle pole body, and a Tub4p- green fluorescent protein fusion is able to associate with a preexisting spindle pole body, suggesting that there is dynamic exchange between cytoplasmic and spindle pole body forms of Tub4p. Perturbation of Tub4p function, either by conditional mutation or by depletion of the protein, results in spindle as well as spindle pole body defects, but does not eliminate the ability of microtubules to regrow from, or remain attached to, the spindle pole body. The spindle pole bodies in tub4 mutant cells duplicate but do not separate, resulting in a monopolar spindle. EM revealed that one spindle pole body of the duplicated pair appears to be defective for the nucleation of microtubules. These results offer insight into the role of gamma- tubulin in microtubule-organizing center function.  相似文献   

15.
16.
The organization of microtubules is determined in most cells by a microtubule-organizing center, which nucleates microtubule assembly and anchors their minus ends. In Saccharomyces cerevisiae cells lacking She1, cytoplasmic microtubules detach from the spindle pole body at high rates. Increased rates of detachment depend on dynein activity, supporting previous evidence that She1 inhibits dynein. Detachment rates are higher in G1 than in metaphase cells, and we show that this is primarily due to differences in the strengths of microtubule attachment to the spindle pole body during these stages of the cell cycle. The minus ends of detached microtubules are stabilized by the presence of γ-tubulin and Spc72, a protein that tethers the γ-tubulin complex to the spindle pole body. A Spc72-Kar1 fusion protein suppresses detachment in G1 cells, indicating that the interaction between these two proteins is critical to microtubule anchoring. Overexpression of She1 inhibits the loading of dynactin components, but not dynein, onto microtubule plus ends. In addition, She1 binds directly to microtubules in vitro, so it may compete with dynactin for access to microtubules. Overall, these results indicate that inhibition of dynein activity by She1 is important to prevent excessive detachment of cytoplasmic microtubules, particularly in G1 cells.  相似文献   

17.
B R Oakley  C E Oakley  Y Yoon  M K Jung 《Cell》1990,61(7):1289-1301
We have recently discovered that the mipA gene of A. nidulans encodes gamma-tubulin, a new member of the tubulin superfamily. To determine the function of gamma-tubulin in vivo, we have created a mutation in the mipA gene by integrative transformation, maintained the mutation in a heterokaryon, and determined the phenotype of the mutation in spores produced by the heterokaryon. The mutation is lethal and recessive. It strongly inhibits nuclear division, less strongly inhibits nuclear migration, and, as judged by immunofluorescence microscopy, causes a reduction in the number and length of cytoplasmic microtubules and virtually a complete absence of mitotic apparatus. We conclude that gamma-tubulin is essential for microtubule function in general and nuclear division in particular. Immunofluorescence microscopy of wild-type hyphae with affinity-purified, gamma-tubulin-specific antibodies reveals that gamma-tubulin is a component of interphase and mitotic spindle pole bodies. We propose that gamma-tubulin attaches microtubules to the spindle pole body, nucleates microtubule assembly, and establishes microtubule polarity in vivo.  相似文献   

18.
《The Journal of cell biology》1995,129(4):1033-1047
Spindle formation in fission yeast occurs by the interdigitation of two microtubule arrays extending from duplicated spindle pole bodies which span the nuclear membrane. By screening a bank of temperature-sensitive mutants by anti-tubulin immunofluorescence microscopy, we previously identified the sad1.1 mutation (Hagan, I., and M. Yanagida. 1990. Nature (Lond.). 347:563-566). Here we describe the isolation and characterization of the sad1+ gene. We show that the sad1.1 mutation affected both spindle formation and function. The sad1+ gene is a novel essential gene that encodes a protein with a predicted molecular mass of 58 kD. Deletion of the gene was lethal resulting in identical phenotypes to the sad1.1 mutation. Sequence analysis predicted a potential membrane-spanning domain and an acidic amino terminus. Sad1 protein migrated as two bands of 82 and 84 kD on SDS-PAGE, considerably slower than its predicted mobility, and was exclusively associated with the spindle pole body (SPB) throughout the mitotic and meiotic cycles. Microtubule integrity was not required for Sad1 association with the SPB. Upon the differentiation of the SPB in metaphase of meiosis II, Sad1-staining patterns similarly changed from a dot to a crescent supporting an integral role in SPB function. Moderate overexpression of Sad1 led to association with the nuclear periphery. As Sad1 was not detected in the cytoplasmic microtubule-organizing centers activated at the end of anaphase or kinetochores, we suggest that Sad1 is not a general component of microtubule-interacting structures per se, but is an essential mitotic component that associates with the SPB but is not required for microtubule nucleation. Sad1 may play a role in SPB structure, such as maintaining a functional interface with the nuclear membrane or in providing an anchor for the attachment of microtubule motor proteins.  相似文献   

19.
The cell cycle of the marine centric diatom Stephanopyxis turris consists of a series of spatially and temporally well-ordered events. We have used immunofluorescence microscopy to examine the role of cytoplasmic microtubules in these events. At interphase, microtubules radiate out from the microtubule-organizing center, forming a network around the nucleus and extending much of the length and breadth of the cell. As the cell enters mitosis, this network breaks down and a highly ordered mitotic spindle is formed. Peripheral microtubule bundles radiate out from each spindle pole and swing out and away from the central spindle during anaphase. Treatment of synchronized cells with 2.5 X 10(-8) M Nocodazole reversibly inhibited nuclear migration concurrent with the disappearance of the extensive cytoplasmic microtubule arrays associated with migrating nuclei. Microtubule arrays and mitotic spindles that reformed after the drug was washed out appeared normal. In contrast, cells treated with 5.0 X 10(-8) M Nocodazole were not able to complete nuclear migration after the drug was washed out and the mitotic spindles that formed were multipolar. Normal and multipolar spindles that were displaced toward one end of the cell by the drug treatment had no effect on the plane of division during cytokinesis. The cleavage furrow always bisected the cell regardless of the position of the mitotic spindle, resulting in binucleate/anucleate daughter cells. This suggests that in S. turris, unlike animal cells, the location of the plane of division is cortically determined before mitosis.  相似文献   

20.
Accurate nuclear position is essential for each daughter cell to receive one DNA complement. In budding yeast, a surveillance mechanism known as the spindle position checkpoint ensures that exit from mitosis only occurs when the anaphase nucleus is positioned along the mother-bud axis. We identified the protein kinase Kin4 as a component of the spindle position checkpoint. KIN4 prevents exit from mitosis in cells with mispositioned nuclei by inhibiting the mitotic exit network (MEN), a GTPase signaling cascade that promotes exit from mitosis. Kin4 is active in cells with mispositioned nuclei and predominantly localizes to mother cells, where it is ideally situated to inhibit MEN signaling at spindle pole bodies (SPBs) when anaphase spindle elongation occurs within the mother cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号