首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
通过室内饲养观察,重点研究了东方蝾螈的产卵行为、受精卵孵化、仔螈的变态发育等繁殖生物学.东方蝾螈雌螈产卵前有明显的筑巢行为,分批产卵,产卵时间不集中,产卵期持续46~98 d,平均产卵期为78 d±14 d,产卵高峰期在5月上中旬,平均产卵量为101±56枚;温度对受精卵孵化影响十分显著,3月份产的卵平均54.1 d孵出仔螈,6月份产的卵平均11 d孵出仔螈,在15~26℃的自然水温条件下,受精卵一般需要11~30 d孵出仔螈;仔螈的变态发育与温度、饲料等因素密切相关,在24~25℃的控温养殖条件下,仔螈40 d后外鳃开始萎缩,68~79 d完成变态发育,但在自然水温下,只有78%的仔螈当年能完成变态发育.  相似文献   

2.
捕食风险是两栖动物幼体表型和生活史进化重要的选择压力之一。红瘰疣螈Tylototriton shanjing为云南山地环境中典型的有尾两栖类,山地环境水体水量的迅速减少常导致红瘰疣螈在幼体发育阶段捕食风险增加。本研究通过实验,观察红瘰疣螈幼体的体长和体质量在不同捕食风险环境中的变化、变态时体型以及完成变态发育的时间差异,探讨捕食风险对红瘰疣螈幼体个体早期发育的影响。实验设计4个不同的捕食风险处理:无任何捕食者的无捕食组、有同种个体化学信号的同种异体组、有同种尾受伤个体化学信号的断尾组、有入侵物种——克氏原螯虾Procambarus clarkii信息的外来物种组。结果显示,红瘰疣螈幼体在不同捕食风险环境中的生长发育过程不同。在生长发育前期,所有处理组的幼体生长均相似,而在中后期,有捕食风险存在的3个处理组生长发育显著加快,最终变态时的体长和体质量要比无捕食风险组更长和更重,体型更大。幼体在有捕食风险存在的处理组完成变态的时间要比无捕食风险组显著更短。这表明,红瘰疣螈幼体在面对捕食风险增加时,通过在胚后发育后期加快生长和缩短发育时间,尽快完成变态,离开幼体发育水体来适应高捕食风险的水环境。  相似文献   

3.
大凉螈繁殖生态   总被引:2,自引:1,他引:1  
龚宇舟  王刚  黄蜂  何流洋  束潇潇  谢锋 《生态学报》2019,39(9):3144-3152
大凉螈是我国特有的珍稀有尾两栖动物,其种群数量目前呈现明显下降趋势,然而涉及该物种保护的繁殖生态学研究仍十分匮乏。通过融合围栏陷阱及标志重捕的样方调查法,对大凉螈石棉栗子坪种群繁殖个体和变态登陆幼体的迁徙、繁殖群体种群大小、繁殖场内雌雄有效性比变化等进行了研究。运用Jolly-Seber法估测了繁殖种群大小,运用单因素方差分析或Kruskal-Wallis秩和检验比较了不同时期进入繁殖场的雄性大凉螈头体长及体重,运用t检验或者Wilcoxon秩和检验比较了雌雄性间形态上的差异,运用t检验、t′检验或Wilcoxon秩和检验比较了野外抱对雄性与非抱对雄性间的体征差别,运用Pearson相关分析探讨了雌性产卵量与其身体形态的关系,同时观察了卵的孵化情况。研究结果表明:大凉螈的繁殖季为每年的4月下旬到7月下旬,幼体最早于8月上旬变态登陆。估测调查地繁殖场内雄性大凉螈繁殖种群大小约为391尾,雄螈较雌螈更早进入繁殖场且在场内停留时间更长,体重较轻的雄螈较晚迁入繁殖场。有效性比明显偏雄(雌/雄:0.03—0.10)。雌雄间具明显性二型性,雌性个体的头体长、体重及肥满度均大于雄性,而雄性的尾高和尾长占全长的比例则大于雌性。对比自然抱对雄性和非抱对雄性个体发现,抱对个体在头体长、体重和尾高等体征方面显著大于非抱对个体,暗示这些形态特征可能在雄性竞争配偶的过程中起到关键作用。雌螈在室内条件下平均产卵数为176枚,产卵历时2—4 d,产卵量与雌性肥满度正相关,卵的平均孵化期为15.7 d,孵出幼体平均全长为9.74 mm。  相似文献   

4.
镇海棘螈(Echinotriton chinhaiensis)为国家一级重点保护野生动物,其种群面临着生境退化及丧失的重要威胁。产卵是决定镇海棘螈种群数量增长的关键环节之一,了解其产卵选择的微生境偏好可以更有针对性地保护该物种。本研究旨在确定影响镇海棘螈产卵场微生境选择的关键环境变量,同时为该物种的产卵生境保护、改造和重建提供科学基础。本文于2021年3-5月(繁殖期)在浙江省宁波市北仑区林场对镇海棘螈产卵位点(n=105)与非产卵位点(n=70)处的18个微生境变量进行调查。采用拟合优度卡方检验判断3种无序分类变量的差异性,并利用生境喜好系数对生境选择性进行分析。采用二元逻辑斯蒂回归模型对15个数值型变量进行分析,确定影响镇海棘螈产卵微生境选择的关键变量。结果显示镇海棘螈繁殖期间对产卵场微生境有明显偏好,通常产卵于朝向水坑、落叶层较厚(5.19±0.18 cm)、坡度较陡(18.64°±1.18°)和土壤含水量较低(33.51%±1.87%)的土壤基质上。此外,在大型遮蔽物中,镇海棘螈偏好选择体积较小的石块和乔木(2,994.63±316.17 cm3)作为遮蔽...  相似文献   

5.
不同温度对脊尾白虾胚胎发育与幼体变态存活的影响   总被引:5,自引:0,他引:5  
选用实验室内人工控制交尾的脊尾白虾,研究了不同温度对脊尾白虾胚胎发育及幼体变态、存活的影响。结果表明,在盐度为31的条件下,脊尾白虾胚胎发育的生物学零度为12.18℃,有效积温为3828.27℃.h。在15.3—28.1℃范围内,胚胎发育时间随着温度升高而呈双曲线性缩短,而胚胎发育速度随着温度的升高而呈直线性加快,但当温度超过30℃时,胚胎无法正常完成发育。脊尾白虾幼体变态发育速度随着温度的升高而加快,18、20、22、24、26、28℃各实验组开始出现仔虾的时间依次为17、14、11、9、8和8 d,各组90%以上幼体变态为仔虾的时间依次为21、18、15、14、11和11 d。各实验组在幼体变态过程中存活率都呈明显的阶梯式下降趋势,且28℃组的存活率下降最快,但当存活幼体全部变为仔虾时,各实验组间的存活率并无显著性差异(P>0.05)。18℃组仔虾干质量明显高于其它各组(P<0.05),28℃组仔虾干质量最低,但与20、22、24、26℃组无显著性差异(P>0.05)。因此在脊尾白虾育苗中,幼体孵化温度不应低于12℃,最高不超过28℃为宜;幼体培育温度,建议控制在22—26℃为最佳。  相似文献   

6.
贵州疣螈(Tylototriton kweichowensis)为中国特有种,国家Ⅱ级重点保护野生动物,对生境变化具有重要指示意义。2018年9月至2019年10月,在贵州省毕节市撒拉溪石漠化综合治理示范区,对贵州疣螈栖息地、形态特征、繁殖行为进行了野外观测。调查显示,贵州疣螈栖息于山塘、山泉、蓄水池、临时性积水坑(塘)等水域,个体全长、尾长和体重雌螈均显著高于雄螈。贵州疣螈于4月18日雷雨天气后破眠外出活动,繁殖始于4月29日,最晚见于8月8日,高峰期为5至6月;繁殖期贵州疣螈的性比总体上偏雄,但在产卵期性比偏雌;雌、雄螈抱对时间几分钟到40min不等;抱对结束后开始排精、纳精;产卵活动在纳精后的1~2 d进行,卵产于繁殖场水底、草或石头上;卵的孵化率为55%,平均孵化期8d,幼体完成变态发育需130d。研究表明,贵州疣螈的繁殖与发育受降雨、水量、温度变化的影响较大,且繁殖场所相对较为固定,容易受到人类活动的干扰。因此,在石漠化治理和生态修复时注重贵州疣螈的栖息地保护,必要时应人工新建稳固繁殖场,保障其生态繁衍。  相似文献   

7.
镇海棘螈的濒危原因探索及其保护建议   总被引:1,自引:1,他引:0  
镇海棘螈极度濒危.柴桥中学研究小组在教师的指导下对镇海棘螈的濒危原因进行考察、分析和归类,并提出保护建议。  相似文献   

8.
中华绒螯蟹Eriocheir sinensis H.Milne-Edwards的幼体发育   总被引:7,自引:1,他引:6  
1.本文所报道毛蟹的幼体发育试验,全部是在实验室内进行的。 2.毛蟹的幼体发育共经五个(氵蚤)状幼体期和一个大眼幼体期。卵孵化出膜的幼体即为第一(氵蚤)状幼体,而不是早期(氵蚤)伏幼体或原(氵蚤)伏幼体。这两种幼体应该是在卵膜内度过的。 3.在水温11—22℃,盐度为9‰的实验室条件下,从幼体出膜到第一期幼蟹的出现,共经39—40天。每蜕一次皮,即进入另一发育时期,其所需的时间,随着温度的升高而缩短。其发育速度见下表: 幼体名称 水温(℃) 日数 第一(氵蚤)状幼体 11—17 7—9 第二(氵蚤)状幼体 17—18 5—6 第三(氵蚤)状幼体 18—20 6—7 第四(氵蚤)状幼体 16—19.5 5—6 第五(氵蚤)状幼体 16.5—19 7—8 大眼幼体 19—22 9—10 4.饵料、盐度、水温和水质等因子对幼体有着不同程度的影响。 5.(氵蚤)状幼体以两对颚足外肢末端的羽伏刚毛的数目,胸、腹肢的大小与形状和尾叉内面中部刚毛的数目为分期的主要依据。  相似文献   

9.
用 6种温湿度条件孵化安徽宿州乾山山地麻蜥 (Eremiasbrenchleyi)卵 ,观测孵化卵质量变化、胚胎利用卵内物质和能量以及孵出幼体特征。卵在产出后 1h内收集 ,共设置 3× 2种温湿度处理 (温度分别为2 7、 30和 33℃ ;湿度分别为 - 2 2 0、 0kPa)。每隔 5d称卵重 ,直至幼体孵出。幼体经测量、称重后 ,解剖、分离为躯干、剩余卵黄和脂肪体三组分 ,用于成分测试。卵从环境中吸水导致质量增加 ,孵化温、湿度及其相互作用显著影响孵化卵的质量变化 :同一温度下 ,高湿度 (0kPa)孵化卵的终末质量大于低湿度 (- 2 2 0kPa)孵化卵 ;同一湿度下 ,低温 (2 7和 30℃ )孵化卵的终末质量大于高温 (33℃ )孵化卵。温度显著影响孵化期 ,随温度的升高孵化期缩短 ;湿度及其与温度的相互作用对孵化期无显著影响。孵化温湿度对孵化成功率无显著影响。温度显著影响胚胎对卵内物质的动用、幼体大小、质量以及剩余卵黄质量 ;除剩余卵黄外 ,湿度及其与温度的相互作用不影响山地麻蜥孵出幼体几乎所有的被检测特征。 33℃孵出幼体的大小和质量均显著小于 2 7和 30℃ ,并特征性地具有较大的剩余卵黄。因此 ,33℃不适宜孵化山地麻蜥卵。 2 7℃和 30℃中孵出幼体躯干发育良好 ,各项被测定的特征指标极其相似。  相似文献   

10.
用3种水热条件下(3温度×1湿度)孵化南草蜥(Takydomus sexlineatusDaudiin)卵以观测孵化卵质量变化、卵大小、孵化期、胚胎发育及孵出幼体特征。孵化过程中, 每5 d测定卵质量和大小。初生幼体称重后冰冻处死, 解剖分离为躯干、剩余卵黄和腹脂肪体, 65 ℃恒温干燥后称重。不同孵化温度对孵化期的长短有明显影响, 孵化期随孵化温度升高而缩短, 24 ℃平均41.8 d、27 ℃平均35.4 d、30 ℃平均34.0 d。卵孵化到14 d肉眼可见胚胎, 此后胚胎发育变化明显加速。孵化温度显著影响孵出幼体的质量、大小。本实验的受精卵在24 ℃、27 ℃中孵出的幼体质量较大。24 ℃、27 ℃发育的胚胎对卵黄的利用最充分, 剩余卵黄少。  相似文献   

11.
12.
13.
14.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

15.
16.
17.
18.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号