首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Ibrahim  K. S.  El-Sayed  E. M. 《Neurophysiology》2020,52(2):169-175
Neurophysiology - Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder, characterized by depletion of dopamine resulted from the death of dopaminergic neurons in the...  相似文献   

2.
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg?1) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg?1) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21–72.84%, while that of the corresponding controls was only 25.85–34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.  相似文献   

3.
Oleogels were prepared from extra virgin olive oil, corn oil, sunflower oil, and flaxseed oil with a mixture of β-sitosterol and stearic acid (Sit1:SA4, w/w) at concentrations of 15 and 20 g/100 g oil. The prepared oleogels were characterized by different methods to study the influence of oil type on the oleogel properties. The oil type influenced the colour and appearance of the oleogel. The flaxseed oil based oleogel showed lower oil loss and higher firmness than those of other oils based oleogels. The increase of gelator mixture from 15 to 20 g/100 g oil reduced the oil loss and improved the firmness of oleogel samples. The microscopy and small-angle x-ray scattering analyses showed different microstructures and crystallographic reflections for oleogels prepared from different oil types. Also, the oil type and concentration of gelator mixture influenced the melting and crystallization enthalpies of oleogel. Furthermore, different oils based oleogels showed varying values of viscosity, storage modulus (G’), and loss modulus (G”). Therefore, it can be concluded that the oil type and concentration of gelator influence the functional properties of oleogel and the flaxseed oil resulted in oleogel with good properties compared with other oils used in the study.  相似文献   

4.
We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.  相似文献   

5.
Phytoremediation is a nondestructive, cost-effective in-situ technology to clean up contaminated soils. In the case of contamination with petroleum hydrocarbons, plants enhance microbial degradation of the contaminant in the rhizosphere. The potential of this technology for the tropics should be high due to prevailing climatic conditions favoring plant growth and stimulating microbial activity. Investigations of the potential of tropical plants for phytoremediation, however, are scarce. The present work studied two grasses and six legumes from the eastern savannah of Venezuela on their reaction to crude oil contamination in soil. Results shall help to identify plants with a potential for phytoremediation and subsequent studies. Seedling emergence and biomass production were determined for plants growing in soil contaminated with 0%, 3%, and 5% heavy crude oil. Contamination had, in general, a tendential but not significant negative influence on seedling emergence. Dry matter production was reduced by only a few percent to up to 85%. Furthermore, in some legumes inhibition of nodulation was observed. The grass Brachiaria brizantha and the legumes Centrosema brasilianum and Calopogonium mucunoides are promising for phytoremediation because in contaminated soil they combined high seedling emergence with least affected biomass production. Since they are cultivated forage/soil cover species also in other regions of the tropics, their potential for phytoremediation of petroleum contaminated soils extends beyond Venezuela.  相似文献   

6.
In this study we determined oil degradation rates in the North Sea under most natural conditions. We used the heavy fuel oil, Bunker C, the major oil pollutant of the North Sea, as the model oil. Experiments were conducted in closed systems with water sampled during winter and repeated under identical conditions with water collected during summer. No nitrogen or phosphorous was added and conditions were chosen such that neither oxygen nor nutrients, present in the water, would become limiting during the experiments. We detected a fourfold increased degradation rate for water samples taken in summer (18°C water temperature) as compared to water sampled in winter (4°C water temperature). Under the assumption that biodegradation of oil can be regarded as a Michaelis-Menten type kinetic reaction, the kinectic constants Vmax and KM were determined for oil biodegradation at 4°C and 18°C. At both temperatures KM was about 40 ppm, whereas Vmax was 3–4 times higher at 18°C. From both Vmax and the results of fermentation studies, we determined the maximum rates of Bunker C oil degradation in the North Sea as ∼20 g m−3a−1 at 4°C in winter and 60–80 g m−3a−1 at 18°C in summer. Furthermore, while over 25% of the oil was degraded within 6 weeks in summer, only 6.6% of the oil was degraded in winter. A higher incubation temperature in winter (18°C) increased both the rate and the percentage of oil degraded, but degradation did not reach the level obtained during the summer. While these data reflect the oxidation only of the hydrocarbons, we conducted experiments directly in the open sea to determine the contribution of abiotic factors to oil removal. Approximately 42% of the oil was lost within 6 weeks under these conditions in summer and 65% in winter. However, GC-MS analysis of the recovered oil showed no significant change in the alkane pattern that would indicate enhanced degradation. Thus, mainly abiotic factors such as erosion and dispersion rather than degradation were responsible for enhanced oil removal. Especially the high loss during winter can be attributed to frequent storms resulting in greater dispersion. In conclusion, the higher oil degrading potential of the microbial population in the North Sea was represented by a four times faster oil degradation during the summer. In-situ experiments showed that abiotic factors can have an equal (summer) or even higher (winter) impact on oil removal.  相似文献   

7.
8.
We searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E. oleifera (H.B.K) Cortés. The oil palm cross LM2T x DA10D between two heterozygous parents was considered in our experiment as an intraspecific representative of E. guineensis. Its QTLs were compared to QTLs published for the same traits in an interspecific Elaeis pseudo-backcross used as an indirect representative of E. oleifera. Few correlations were found in E. guineensis between pulp fatty acid proportions and yield traits, allowing for the rather independent selection of both types of traits. Sixteen QTLs affecting palm oil fatty acid proportions and iodine value were identified in oil palm. The phenotypic variation explained by the detected QTLs was low to medium in E. guineensis, ranging between 10% and 36%. The explained cumulative variation was 29% for palmitic acid C16:0 (one QTL), 68% for stearic acid C18:0 (two QTLs), 50% for oleic acid C18:1 (three QTLs), 25% for linoleic acid C18:2 (one QTL), and 40% (two QTLs) for the iodine value. Good marker co-linearity was observed between the intraspecific and interspecific Simple Sequence Repeat (SSR) linkage maps. Specific QTL regions for several traits were found in each mapping population. Our comparative QTL results in both E. guineensis and interspecific materials strongly suggest that, apart from two common QTL zones, there are two specific QTL regions with major effects, which might be one in E. guineensis, the other in E. oleifera, which are independent of each other and harbor QTLs for several traits, indicating either pleiotropic effects or linkage. Using QTL maps connected by highly transferable SSR markers, our study established a good basis to decipher in the future such hypothesis at the Elaeis genus level.  相似文献   

9.
Abstract The enrichment of several genes (xylE, nahAcd, todC1C2BA, tmoABCDE, alkB) that encode enzymes responsible for key steps in the degradation of hydrocarbons, and one gene specific to rRNA group I of the genus Pseudomonas, was studied in DNA extracted from a fuel oil–contaminated field site, and in laboratory microcosms (with the exception of alkB). Toluene, ethylbenzene, xylene, and naphthalene concentrations were related to the extent of hybridization of the genes in the field studies. Significant differences were observed in the extent of hybridization of some of the genes between contaminated and noncontaminated samples. In the microcosm studies, gasoline at rates ranging from 0.5 mg to 125 mg gasoline/g of soil as applied to soils, and the changes in hybridization intensity of these genes monitored with time. The lower threshold of gene enrichment of these genes in response to gasoline addition was below 0.5 mg/g soil. Small increases were observed at the 0.5-mg exposure level, but hybridization intensity quickly decreased to levels below detection 6–8 days after addition of the gasoline. A dose-response effect was observed from treatments with gasoline concentrations ranging from 0.5 to 35 mg/g soil. Inhibition by toxic components in gasoline was observed at 75 and 125 mg/g soil levels. Hybridization of the Pseudomonas group 1 probe to field DNA was not significantly enriched in the contaminated field site, although these sequences were enriched in the microcosm studies. Among the genes tested, xylE was the most sensitive indicator of low levels of fuel oil contamination. Received: 23 July 1996; Accepted 9 October 1996  相似文献   

10.
Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12–13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1–8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI.  相似文献   

11.
An investigation of the treatment of a complex waste oil–recycling hydrocarbon wastewater was made by employing white-rot fungal strains immobilized in a pinewood chip-packed reactor. The reactor was operated in sequencing batch mode. The fungal reactor was evaluated in a preliminary bench-scale reactor followed by intermediate-scale operation. Substantial chemical oxygen demand (COD) reduction (> 96% in 48-h batch cycles) and removal of specific influent compound constituents, alkanes (n-C8, n-C10–C12) and aromatic compound (o-xylene), was shown in diluted and undiluted (COD > 37 g L?1) influent. Industrial application of the fungal reactor was evaluated in a 14-m3 pilot plant erected on-site at a waste oil–processing facility. The scale-up implication and optimization of the field plant is discussed in relation to the process-monitoring programme.  相似文献   

12.
Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabilized o/w emulsions could be converted into stable oil powders by means of freeze-drying. Moreover, during this study, the effects of pH and polymer type on release and trans(dermal) delivery of salicylic acid, a model drug, from these oil powders were investigated and compared to those of the respective template emulsions and redispersed oil powders. Physical characterization of the various formulations was performed, such as droplet size analysis and oil leakage, and relationships drawn with regards to release and trans(dermal) delivery. The experimental outcomes revealed that the oil powders could be redispersed in water without changing the release characteristics of salicylic acid. pH and polymer type affected the release of salicylic acid from the oil powders, template emulsions, and redispersed powders similarly. Contrary, the transdermal delivery from the oil powders and from their respective redispersed oil powders was differently affected by pH and polymer type. It was hypothesized that the release had been influenced by the electrostatic interactions between salicylic acid and emulsifiers, whereas the transdermal performance could have been determined by the particle or aggregate sizes of the formulations.KEY WORDS: carrageenan, chitosan, oil powders, release, salicylic acid, topical delivery, whey proteins  相似文献   

13.
Oil sources characterized of increasing viscosity and polarity (flax-seed oil, sunflower oil, extra virgin olive oil, triolein, castor oil) were gelled by using mixtures of β-sitosterol and γ-oryzanol (5, 10 and 20 % w/w). The gelling time, thermal properties as well as structure characteristics were determined. As the oil viscosity increased the gelling time increased. The effect of oil type resulted more evident as the structurant concentration decreased. Samples containing 5 % of the most viscous and polar castor oil did not gelled over the entire experiment. When gels were formed, the firmness of samples decreased in concomitance with modifications of thermal data as the oil viscosity increased. During storage at 20 °C the gels became stronger as consequence of the progression of the aggregation among sterol-sterol ester assemblages. Once again, less structurants were in the mixture more evident was the influence of oil type. These results were attributed to the increase of the difficulty of β-sitosterol and γ-oryzanol molecules to pack together as the oil viscosity increased.  相似文献   

14.
Investigation has been carried out on the constituents of the monoterpene fraction of geranium oil from Pelargonium roseum Bourbon and, besides well-known components of the oil, some new components such as epoxylinalool, methyl heptenone, myrcene, limonene, p-cymene, citral and 2,2,6-trimethyl-6-vinyl-tetrahydropyran which was confirmed by deriving to cinenic acid, have been identified.  相似文献   

15.
16.
The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol−1), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH 0 ) compared with positive entropy term (−T ΔS 0 >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol–sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol–40 sitosterol) started aggregation at higher temperature compared with other ratios.  相似文献   

17.
Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts.  相似文献   

18.
Analysis by GC and GC/MS of the essential‐oil samples obtained from dry above‐ground parts of Hypericum rumeliacum Boiss . (collected in the flowering and fruit‐forming vegetative stages) allowed the identification of 212 components in total, comprising ≥97.8% of the total oil composition. In the flowering phase, the major identified volatile compounds were undecane (6.6%), dodecanal (10.8%), and germacrene D (14.1%), whereas α‐pinene (7.3%), β‐pinene (26.1%), (Z)‐β‐ocimene (8.5%), (E)‐β‐ocimene (10.2%), bicyclogermacrene (7.7%), and germacrene D (15.1%) were dominant in the fruit‐forming phase. Some of the minor constituents found in the studied oil samples (e.g., a homologous series of four 6‐alkyl‐5,6‐dihydro‐2H‐pyran‐2‐ones, i.e., massoia dodeca‐, trideca‐, tetradeca‐, and hexadecalactones) have a restricted occurrence in the Plant Kingdom, and their presence in Hypericum L. spp. has not been previously reported. The chemical compositions of the herein studied additional 34 oils obtained from selected Hypericum taxa were compared using multivariate statistical analysis (agglomerative hierarchical cluster analysis and principal component analysis). The results of these statistical analyses could not be used to either confirm or discard the existence of different H. rumeliacum chemotypes. However, they have implied that the volatile profile of this plant species is determined by the stage of its phenological development.  相似文献   

19.
Knowledge of where roots are active is crucial for efficient management of nutrients in tree crops but measurement of root activity is problematic. Measurement using soil water depletion is an approach that has not been tested in a humid climate. We hypothesised that the three dimensional distribution of root activity of a tree crop in the humid tropics (a) can be determined by measuring soil water depletion during rain-free periods, and (b) is influenced by environment (soil type and climate) and surface management. A field study was carried out in which soil water content was measured and water uptake calculated (by difference between soil water content at beginning and end of rain-free periods) for different surface management zones and depths (0.1 m intervals to 1.6 m depth) under oil palm (Elaeis guineensis Jacq.) at a loam–clay site and a sandy site. Significant differences were measured between sites and between surface management zones at each site. At both sites water uptake was highest under the weeded zone close to the palm stem, slightly lower under the zone where pruned fronds are placed, and lowest under the path used for removing harvested fruit. Vertical distribution of root activity differed between the sites, with higher activity near the surface at the finer textured site. Total water uptake values were lower than estimates of evapotranspiration made using climate data. The difference was probably largely due to water uptake from deeper than 1.6 m. This study showed that the spatial distribution of tree root activity in a humid climate could be quantified using a relatively simple method.  相似文献   

20.

Background

The extent to which Alberta oil sands mining and upgrading operations have enhanced delivery of bitumen-derived contaminants via the Athabasca River and atmosphere to the Peace-Athabasca Delta (200 km to the north) is a pivotal question that has generated national and international concern. Accounts of rare health disorders in residents of Fort Chipewyan and deformed fish in downstream ecosystems provided impetus for several recent expert-panel assessments regarding the societal and environmental consequences of this multi-billion-dollar industry. Deciphering relative contributions of natural versus industrial processes on downstream supply of polycyclic aromatic compounds (PACs) has been identified as a critical knowledge gap. But, this remains a formidable scientific challenge because loading from natural processes remains unknown. And, industrial activity occurs in the same locations as the natural bitumen deposits, which potentially confounds contemporary upstream-downstream comparisons of contaminant levels.

Methods/Principal Findings

Based on analyses of lake sediment cores, we provide evidence that the Athabasca Delta has been a natural repository of PACs carried by the Athabasca River for at least the past two centuries. We detect no measureable increase in the concentration and proportion of river-transported bitumen-associated indicator PACs in sediments deposited in a flood-prone lake since onset of oil sands development. Results also reveal no evidence that industrial activity has contributed measurably to sedimentary concentration of PACs supplied by atmospheric transport.

Conclusions/Significance

Findings suggest that natural erosion of exposed bitumen in banks of the Athabasca River and its tributaries is a major process delivering PACs to the Athabasca Delta, and the spring freshet is a key period for contaminant mobilization and transport. This baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring programs for the lower Athabasca River watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号