首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Avicelase, carboxymethyl cellulase (CMCase), and β-glucosidase activities have been compared between Clostridium thermocellum and three extremely thermophilic, cellulolytic anaerobes, isolates TP8, TP11, and KT8. The three isolates were all small, gram-negative staining, oval-ended rods which occurred singly and, at exponential phase, in long chains. They were nonflagellated and no spores were visible. The KT8 and TP11 isolates caused clumping of the cellulose during growth. In all four organisms the CMCase activity paralleled cell growth; however, in C. thermocellum and TP8 the avicelase activity did not increase until early stationary phase. Total CMCase activity in C. thermocellum was significantly higher than in the three isolates; however, avicelase activities were much more comparable among the four organisms. C. thermocellum produced higher levels of ethanol, and all four organisms produced similar concentrations of acetate. The amounts of free and bound CMCase and avicelase activities were investigated. In C. thermocellum and TP8 most of the CMCase and avicelase activities were bound to the cellulose in the medium. In contrast, most of the CMCase activity in TP11 and KT8 was free in the culture supernatant; a significant percentage of avicelase activity was also free. The TP8 isolate was also grown on a defined medium with urea as sole nitrogen source and cellulose serving as the carbon source. Under these conditions the pattern of enzyme production was the same as that in the enriched medium, although the level of that production was considerably reduced.  相似文献   

3.
Two general strategies have been proposed for microbial cellulose degradation: filamentous fungi and aerobic bacteria secrete uncomplexed cellulases, while some anaerobic bacteria produce a cell-associated and large extracellular multienzymatic complex called cellulosomes. By using a combination of 1D-blue native (BN)-PAGE, 2D-BN/SDS-PAGE, zymography, and LC-MS/MS methods, we demonstrate here that Streptomyces sp. I1.2, an aerobic bacterium associated with the land snail Achatina fulica, is able to degrade both crystalline cellulose and sugarcane bagasse through the production of cellulolytic multienzymatic complexes containing different combinations of cellobiohydrolases, endo-glucanases, xylanases, lytic polysaccharide monooxygenases (LPMOs), and peptidases. The assembly and subunit composition of these complexes is specifically affected by the carbon source, while the multienzymatic complexes produced after growth in crystalline cellulose are composed mainly by one cellobiohydrolase and chitinase, in which the complexes produced in response to sugarcane bagasse are more heterogeneous and contain cellobiohydrolases, endo-glucanases, pectate lyases, one LPMO, β-1,3-glucanases, and one xylanase. Our results suggest that Streptomyces sp. I1.2 displays an alternative mechanism for deconstruction of cellulose that depends upon a noncellulosomic association of catalytic subunits into high molecular weight complexes in order to achieve higher catalytic efficiencies.  相似文献   

4.
Penicillium echinulatum was evaluated as a cellulolytic enzyme producer in shaking flasks and bioreactor submerged culture using sugarcane bagasse as carbon source. Sodium hydroxide delignified steam-exploded pretreated bagasse (SDB) and hydrothermal pretreated bagasse had a maximum filter paper activity (FPase) of 2.4 and 2.6 FPU/mL, respectively. Delignified acid pretreated bagasse and Celufloc 200TM (CE) carbon sources displayed maximum FPase of 1.3 and 1.6 FPU/mL while in natura bagasse (INB) provided the lowest enzyme activity, ca. 0.4 FPU/mL. Measurement of surface specific area of lignocellulosic material and scanning electron microscopic images showed a possible correlation between fungal mycelia accessibility to lignocellulosic particles and obtained cellulolytic enzyme activity of fermentation broth. Fed-batch experiments performed in a controlled bioreactor attained the highest value of FPase of 3.7 FPU/mL, enzyme productivity of 25.7 FPU/L h, and enzyme yield from cellulose equal to 134 FPU/g with SDB. Enzyme hydrolysis of steam-pretreated bagasse accomplished with the obtained supernatant of fermentation broth (10 FPU/g of biomass and 5 % w/v) performed better than commercial cellulose complex. The results showed that P. echinulatum has potential to be used as an on-site enzyme platform aiming second bioethanol production from sugarcane lignocellulosic residue.  相似文献   

5.
The anaerobic thermophilic bacterium, Clostridium thermocellum, is a potent cellulolytic microorganism that produces large extracellular multienzyme complexes called cellulosomes. To isolate C. thermocellum organisms that possess effective cellulose-degrading ability, new thermophilic cellulolytic strains were screened from more than 800 samples obtained mainly from agriculture residues in Thailand using microcrystalline cellulose as a carbon source. A new strain, C. thermocellum S14, having high cellulose-degrading ability was isolated from bagasse paper sludge. Cellulosomes prepared from S14 demonstrated faster degradation of microcrystalline cellulose, and 3.4- and 5.6-fold greater Avicelase activity than those from C. thermocellum ATCC27405 and JW20 (ATCC31449), respectively. Scanning electron microscopic analysis showed that S14 had unique cell surface features with few protuberances in contrast to the type strains. In addition, the cellulosome of S14 was resistant to inhibition by cellobiose that is a major end product of cellulose hydrolysis. Saccharification tests conducted using rice straw soaked with sodium hydroxide indicated the cellulosome of S14 released approximately 1.5-fold more total sugars compared to that of ATCC27405. This newly isolated S14 strain has the potential as an enzyme resource for effective lignocellulose degradation.  相似文献   

6.
The conversion of agro-industrial residues, such as sugarcane bagasse, into high-value products and renewable energy, within the biorefinery concept, is a potential alternative towards the sustainable management of these resources. This work evaluates the production of cellulolytic enzymes by a selected strain of Aspergillus niger cultivated in sugarcane bagasse under solid-state fermentation using an instrumented lab-scale bioreactor. The effects of environmental factors including the type of substrate and medium composition, as well as the operational conditions (air flow rate, inlet air relative humidity, and initial substrate moisture content) on the production of the enzymatic complex were evaluated using statistical design tools. Significant increases in FPase, endoglucanase, and xylanase activities were achieved under the optimized conditions predicted by the models, with values of 0.88, 21.77, and 143.85 IU/g of dry solid substrate, respectively, representing around ten-, four-, and twofold increases compared to the activities obtained under the initial growth conditions. This demonstrates the importance of evaluating environmental and operational criteria in order to achieve efficient enzyme production. The crude enzymatic extract obtained under optimized conditions was employed for enzymatic hydrolysis of pretreated sugarcane bagasse. Approximately 13 % of total reducing sugars, and a glucose concentration of 2.54 g/L, were obtained after 22 h of hydrolysis of steam exploded sugarcane bagasse, indicating that the enzymatic cocktail produced has good potential for use in the conversion of biomass.  相似文献   

7.

Background

Cellulases continue to be one of the major costs associated with the lignocellulose hydrolysis process. Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic bacterium that produces cellulosomes capable of efficiently degrading plant cell walls. The end-product cellobiose, however, inhibits degradation. To maximize the cellulolytic ability of C. thermocellum, it is important to eliminate this end-product inhibition.

Results

This work describes a system for biological saccharification that leads to glucose production following hydrolysis of lignocellulosic biomass. C. thermocellum cultures supplemented with thermostable beta-glucosidases make up this system. This approach does not require any supplementation with cellulases and hemicellulases. When C. thermocellum strain S14 was cultured with a Thermoanaerobacter brockii beta-glucosidase (CglT with activity 30 U/g cellulose) in medium containing 100 g/L cellulose (617 mM initial glucose equivalents), we observed not only high degradation of cellulose, but also accumulation of 426 mM glucose in the culture broth. In contrast, cultures without CglT, or with less thermostable beta-glucosidases, did not efficiently hydrolyze cellulose and accumulated high levels of glucose. Glucose production required a cellulose load of over 10 g/L. When alkali-pretreated rice straw containing 100 g/L glucan was used as the lignocellulosic biomass, approximately 72% of the glucan was saccharified, and glucose accumulated to 446 mM in the culture broth. The hydrolysate slurry containing glucose was directly fermented to 694 mM ethanol by addition of Saccharomyces cerevisiae, giving an 85% theoretical yield without any inhibition.

Conclusions

Our process is the first instance of biological saccharification with exclusive production and accumulation of glucose from lignocellulosic biomass. The key to its success was the use of C. thermocellum supplemented with a thermostable beta-glucosidase and cultured under a high cellulose load. We named this approach biological simultaneous enzyme production and saccharification (BSES). BSES may resolve a significant barrier to economical production by providing a platform for production of fermentable sugars with reduced enzyme amounts.
  相似文献   

8.
The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.  相似文献   

9.
Sporotrichum thermophile Apinis, was the most active carboxymethyl-cellulose (CMC)-ase producer among seven thermophilic and four thermotolerant fungal species isolated from Egyptian soil and screened for their ability to produce extracellular cellulase in culture media containing CMC as a sole carbon source. The fungus also efficiently hydrolysed filter paper cellulose. Comparison of various untreated and alkali-treated cellulosic and lignocellulosic materials as substrates for cellulase production by S. thermophile revealed the most easily degraded substrate was sugarcane bagasse at 2% concentration. This substrate when alkali treated was the most susceptible to enzymic hydrolysis by culture filtrates of S. thermophile grown on untreated bagasse. Optimum hydrolysis was obtained after 18 h incubation with the filtrate at pH 3·5–4 and 45°C. Alkali treatment of bagasse reduced its lignin content significantly and the culture filtrate of S. thermophile grown on untreated bagasse was found to contain xylanase and polygalacturonase in addition to cellulase and cellobiase.  相似文献   

10.
Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5.  相似文献   

11.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

12.
Ligno(hemi)cellulosics (L(h)Cs) as sugarcane bagasse and loblolly pine sawdust are currently being used to produce biofuels such as bioethanol and biobutanol through fermentation of free sugars that are often obtained enzymatically. However, this bioconversion requires a pretreatment to solubilize the hemicellulose fractions, thus facilitating the action of the cellulolytic enzymes. Instead of the main free monosaccharides used in these current models, the modulation of thermopressurized orthophosphoric acid as a pretreatment, in the ranges of 3–12 atm and pH 1.5–2.5, can produce nondigestible oligosaccharides (NDOS) such as xylo-oligosaccharides (XOS) because heteroxylan is present in both types of hardwood and softwood hemicelluloses. A comparative thin-layer chromatographic analysis of the hydrolytic products showed the best conditions for NDOS production to be 7 atm/water, pH 2.25 and 2.50, and 8.5 atm/water for both sources. Particular hydrolysates from 7 atm (171 °C) at pHs 2.25 and 2.50 both for cane bagasse and pine sawdust, with respective oligosaccharide contents of 57 and 59 %, once mixed in a proportion of 1:1 for each plant source, were used in vitro as carbon sources for Bifidobacterium or Lactobacillus. Once both bacteria attained the stationary phase of growth, an unforeseen feature emerged: the preference of B. animalis for bagasse hydrolysates and, conversely, the preference of L. casei for pine hydrolysates. Considering the fact that nutraceutical oligosaccharides from both hemicelluloses correspond to higher value-added byproducts, the technology using a much diluted thermopressurized orthophosphoric acid pretreatment becomes an attractive choice for L(h)Cs.  相似文献   

13.
The reuse of the solid residues generated in the production of second-generation (2G) ethanol to obtain high-value products is a potential strategy for improving the economic and environmental viability of the overall process. This study evaluated the feasibility of using the residual solids remaining after the enzymatic hydrolysis of sugarcane bagasse for the production of cellulose nanocrystals (CNC), a valuable bionanomaterial. To this end, sugarcane bagasse subjected to steam explosion (SEB) or liquid hot water (LHWB) pretreatment was hydrolysed using different loadings of a commercial cellulase cocktail. Samples of SEB and LHWB were hydrolysed enzymatically, resulting in glucose releases close to 40 g/L, which would be suitable for producing 2G ethanol by microbial fermentation. The solid residues after the enzymatic hydrolysis step presented cellulose contents of up to 54 %, indicating that a significant amount of recalcitrant crystalline cellulose remained available for subsequent use. These solid residues were purified and submitted to acid hydrolysis, resulting in the successful formation of CNC with crystallinity close to 80 %, lengths of 193–246 nm and diameters of 14–18 nm. The CNC produced presented morphology, dimensions, physical-chemical characteristics, thermal stability and crystallinity within the ranges reported for this type of material. Moreover, the enzyme loading or the type of hydrothermal pretreatment process employed here showed no significant effects on the CNC obtained, indicating that these variables could be flexibly adjusted according to specific interests.  相似文献   

14.
The evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii FTI 20037 yeast on xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes activities was performed during fermentation in sugarcane bagasse hemicellulosic hydrolysate. The xylitol production was evaluated by using cells previously growth in 30.0 gl?1 xylose, 30.0 gl?1 glucose and in both sugars mixture (30.0 gl?1 xylose and 2.0 gl?1 glucose). The vacuum evaporated hydrolysate (80 gl?1) was detoxificated by ion exchange resin (A-860S; A500PS and C-150-Purolite®). The total phenolic compounds and acetic acid were 93.0 and 64.9%, respectively, removed by the resin hydrolysate treatment. All experiments were carried out in Erlenmeyer flasks at 200 rpm, 30°C. The maximum XR (0.618 Umg Prot ?1 ) and XDH (0.783 Umg Prot ?1 ) enzymes activities was obtained using inoculum previously growth in both sugars mixture. The highest cell concentration (10.6 gl?1) was obtained with inoculum pre-cultivated in the glucose. However, the xylitol yield and xylitol volumetric productivity were favored using the xylose as carbon source. In this case, it was observed maximum xylose (81%) and acetic acid (100%) consumption. It is very important to point out that maximum enzymatic activities were obtained when the mixture of sugars was used as carbon source of inoculum, while the highest fermentative parameters were obtained when xylose was used.  相似文献   

15.
Humicola grisea var. thermoidea is a deuteromycete which secretes a large spectrum of hydrolytic enzymes when grown on lignocellulosic residues. This study focused on the heterologous expression and recombinant enzyme analysis of the major secreted cellulase when the fungus is grown on sugarcane bagasse as the sole carbon source. Cellobiohydrolase 1.2 (CBH 1.2) cDNA was cloned in Pichia pastoris under control of the AOX1 promoter. Recombinant protein (rCBH1.2) was efficiently produced and secreted as a functional enzyme, presenting a molecular mass of 47?kDa. Maximum enzyme production was achieved at 96?h, in culture medium supplemented with 1.34?% urea and 1?% yeast extract and upon induction with 1?% methanol. Recombinant enzyme exhibited optimum activity at 60?°C and pH 8, and presented a remarkable thermostability, particularly at alkaline pH. Activity was evaluated on different cellulosic substrates (carboxymethyl cellulose, filter paper, microcrystalline cellulose and 4-para-nitrophenyl ??-d-glucopyranoside). Interestingly, rCBH1.2 presented both exoglucanase and endoglucanase activities and mechanical agitation increased substrate hydrolysis. Results indicate that rCBH1.2 is a potential biocatalyst for applications in the textile industry or detergent formulation.  相似文献   

16.
Synthesis of amylase by Aspergillus niger strain UO-01 under solid-state fermentation with sugarcane bagasse was optimized by using response surface methodology and empirical modelling. The process parameters tested were particle size of sugarcane bagasse, incubation temperature and pH, moisture level of solid support material and the concentrations of inoculum, total sugars, nitrogen and phosphorous. The optimum conditions for high amylase production (457.82 EU/g of dry support) were particle size of bagasse in the range of 6–8 mm, incubation temperature and pH: 30.2°C and 6.0, moisture content of bagasse: 75.3%, inoculum concentration: 1 × 107 spores/g of dry support and concentrations of starch, yeast extract and KH2PO4: 70.5, 11.59 and 9.83 mg/g of dry support, respectively. After optimization, enzyme production was assayed at the optimized conditions. The results obtained corroborate the effectiveness and reliability of the empirical models obtained.  相似文献   

17.
High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.  相似文献   

18.

Purpose

Sugarcane bagasse is one of the main agro-industrial residues which can be used to produce wood-based panels. However, more investigations related to its environmental performance assessment are needed, focusing on questions such as: Does it provide environmental benefits? What are its main environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.

Methods

The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main subsystems: bagasse generation, bagasse distribution, and PSB production. For the inventory of PSB, dataset from two previous LCA studies related to the conventional particle board production and the ethanol life cycle for the Brazilian context were used. The allocation criterion for the bagasse generation subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios were analyzed to evaluate the influence of the allocation criteria and the consumption of sugarcane bagasse.

Results and discussion

All hotspots identified by CML and USETox methods are mainly related to the PSB production subsystem (24–100 % of impacts) due to heavy fuel oil, electricity, and urea-formaldehyde resin supply chain. The bagasse generation subsystem was more relevant to the eutrophication category (75 % of impacts). The bagasse distribution subsystem was not relevant because the impacts on all categories were lower than 1 %. PSB can substitute the conventional particle board mainly because of its lower contribution to abiotic depletion and ecotoxicity. Regarding land use impacts, PSB showed lower values according to all indicators (38–40 % of all impacts), which is explained by the lower demand for land occupation in comparison to that of the traditional particle board.

Conclusions

PSB can replace the traditional particle board due to its better environmental performance. The analysis of the economic allocation criterion was relevant only for the EP category, being important to reduce diesel and N-based fertilizers use during sugarcane cultivation. Regarding the influence of the sugarcane bagasse consumption, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided.  相似文献   

19.
Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (Q AIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (ε G) and volumetric oxygen transfer coefficient (k L a) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. Q AIR and  %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence k L a. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher  %S, SCA presented a higher k L a value (0.0448 s?1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for  %S < 10.0 g L?1 and Q AIR > 27.0 L min?1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.  相似文献   

20.
Cost effective bioprocessing of nutraceuticals in present global scenario is a matter of concern. This study explored Paper mill sludge (PMS) and sugarcane bagasse (SCB) as inexpensive substrate for Planococcus sp. TRC1 mediated valuable β-carotene production and residual treated biomass as value added crystalline cellulose source simultaneously. Both biomass supported significant bacterial growth reaching highest yield 38.54 ± 1.4 mg/g on PMS (36 h) and 47.13 ± 1.9 mg/g (48 h) on SCB in solid state fermentation. Luedeking-Piret model revealed growth associated production with α and much lower β values of 5.18 and 0.24 for PMS and 4.5 and 0.165 for SCB. Cost analysis exhibited decrementation of pigment cost/mg by 84 % compared to synthetic media. Optimum production conditions were 30 °C temperature, pH 7, 10 % inoculum and initial moisture content 80 % (PMS) and 85 % (SCB). TLC (Rf = 0.9), HPLC (RT = 7.646) and lambda max (465 nm) confirmed pigment’s β-carotene nature with significant antioxidant and antimicrobial activity. It showed stability at varied temperature, pH and light conditions along with negligible phytotoxicity on Vigna radiata. Planococcus sp. TRC1 delignified PMS (41 %) and SCB (38 %) and FT-IR, FESEM and XRD suggested crystalline nature of residual cellulose rich fraction shedding light on a biorefinery approach for valorization of industrial solid wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号