首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
There is compelling evidence about the manifest effects of inbreeding depression on individual fitness and populations' risk of extinction. The majority of studies addressing inbreeding depression on wild populations are generally based on indirect measures of inbreeding using neutral markers. However, the study of functional loci, such as genes of the major histocompatibility complex (MHC), is highly recommended. MHC genes constitute an essential component of the immune system of individuals, which is directly related to individual fitness and survival. In this study, we analyse heterozygosity fitness correlations of neutral and adaptive genetic variation (22 microsatellite loci and two loci of the MHC class II, respectively) with the age of recruitment and breeding success of a decimated and geographically isolated population of a long-lived territorial vulture. Our results indicate a negative correlation between neutral genetic diversity and age of recruitment, suggesting that inbreeding may be delaying reproduction. We also found a positive correlation between functional (MHC) genetic diversity and breeding success, together with a specific positive effect of the most frequent pair of cosegregating MHC alleles in the population. Globally, our findings demonstrate that genetic depauperation in small populations has a negative impact on the individual fitness, thus increasing the populations' extinction risk.  相似文献   

2.
In natural populations, mating between relatives can have important fitness consequences due to the negative effects of reduced heterozygosity. Parental level of inbreeding or heterozygosity has been also found to influence the performance of offspring, via direct and indirect parental effects that are independent of the progeny own level of genetic diversity. In this study, we first analysed the effects of parental heterozygosity and relatedness (i.e. an estimate of offspring genetic diversity) on four traits related to offspring viability in great tits (Parus major) using 15 microsatellite markers. Second, we tested whether significant heterozygosity–fitness correlations (HFCs) were due to ‘local’ (i.e. linkage to genes influencing fitness) and/or ‘general’ (genome‐wide heterozygosity) effects. We found a significant negative relationship between parental genetic relatedness and hatching success, and maternal heterozygosity was positively associated with offspring body size. The characteristics of the studied populations (recent admixture, polygynous matings) together with the fact that we found evidence for identity disequilibrium across our set of neutral markers suggest that HFCs may have resulted from genome‐wide inbreeding depression. However, one locus (Ase18) had disproportionately large effects on the observed HFCs: heterozygosity at this locus had significant positive effects on hatching success and offspring size. It suggests that this marker may lie near to a functional locus under selection (i.e. a local effect) or, alternatively, heterozygosity at this locus might be correlated to heterozygosity across the genome due to the extensive ID found in our populations (i.e. a general effect). Collectively, our results lend support to both the general and local effect hypotheses and reinforce the view that HFCs lie on a continuum from inbreeding depression to those strictly due to linkage between marker loci and genes under selection.  相似文献   

3.
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome‐wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll‐like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred.  相似文献   

4.
Females should prefer to be fertilized by males that increase the genetic quality of their offspring. In vertebrates, genes of the major histocompatibility complex (MHC) play a key role in the acquired immune response and have been shown to affect mating preferences. They are therefore important candidates for the link between mate choice and indirect genetic benefits. Higher MHC diversity may be advantageous because this allows a wider range of pathogens to be detected and combated. Furthermore, individuals harbouring rare MHC alleles might better resist pathogen variants that have evolved to evade common MHC alleles. In the Seychelles warbler, females paired with low MHC‐diversity males elevate the MHC diversity of their offspring to levels comparable to the population mean by gaining extra‐pair fertilizations. Here, we investigate whether increased MHC diversity results in higher life expectancy and whether there are any additional benefits of extra‐pair fertilizations. Our 10‐year study found a positive association between MHC diversity and juvenile survival, but no additional survival advantage of extra‐pair fertilizations. In addition, offspring with a specific allele (Ase‐ua4) had a fivefold longer life expectancy than offspring without this allele. Consequently, the interacting effects of sexual selection and pathogen‐mediated viability selection appear to be important for maintaining MHC variation in the Seychelles warbler. Our study supports the prediction that MHC‐dependent extra‐pair fertilizations result in genetic benefits for offspring in natural populations. However, such genetic benefits might be hidden and not necessarily apparent in the widely used fitness comparison of extra‐ and within‐pair offspring.  相似文献   

5.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

6.
Climate change will strongly impact aquatic ecosystems particularly in arid and semi‐arid regions. Fish–parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species’ adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio‐temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio‐temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.  相似文献   

7.
Correlations between heterozygosity and fitness are frequently found but rarely well understood. Fitness can be affected by single loci of large effect which correlate with neutral markers via linkage disequilibrium, or as a result of variation in genome‐wide heterozygosity following inbreeding. We explored these alternatives in the common buzzard, a raptor species in which three colour morphs differ in their lifetime reproductive success. Using 18 polymorphic microsatellite loci, we evaluated potential genetic differences among the morphs which may lead to subpopulation structuring and tested for correlations between three fitness‐related traits and heterozygosity, both genome wide and at each locus separately. Despite their assortative mating pattern, the buzzard morphs were found to be genetically undifferentiated. Multilocus heterozygosity was only found to be correlated with a single fitness‐related trait, infection with the blood parasite, Leucocytozoon buteonis, and this was via interactions with vole abundance and age. One locus also showed a significant relationship with blood parasite infection and ectoparasite infestation. The vicinity of this locus contains two genes, one of which is potentially implicated in the immune system of birds. We conclude that genome‐wide heterozygosity is unlikely to be a major determinant of parasite burden and body condition in the polymorphic common buzzard.  相似文献   

8.
Heterozygosity–fitness correlations (HFCs) have been examined in a wide diversity of contexts, and the results are often used to infer the role of inbreeding in natural populations. Although population demography, reflected in population‐level genetic parameters such as allelic diversity or identity disequilibrium, is expected to play a role in the emergence and detectability of HFCs, direct comparisons of variation in HFCs across many populations of the same species, with different genetic histories, are rare. Here, we examined the relationship between individual microsatellite heterozygosity and a range of sexually selected traits in 660 male guppies from 22 natural populations in Trinidad. Similar to previous studies, observed HFCs were weak overall. However, variation in HFCs among populations was high for some traits (although these variances were not statistically different from zero). Population‐level genetic parameters, specifically genetic diversity levels (number of alleles, observed/expected heterozygosity) and measures of identity disequilibrium (g2 and heterozygosity–heterozygosity correlations), were not associated with variation in population‐level HFCs. This latter result indicates that these metrics do not necessarily provide a reliable predictor of HFC effect sizes across populations. Importantly, diversity and identity disequilibrium statistics were not correlated, providing empirical evidence that these metrics capture different essential characteristics of populations. A complex genetic architecture likely underpins multiple fitness traits, including those associated with male fitness, which may have reduced our ability to detect HFCs in guppy populations. Further advances in this field would benefit from additional research to determine the demographic contexts in which HFCs are most likely to occur.  相似文献   

9.
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite‐mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter‐ and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.  相似文献   

10.
Recent evidence suggests that marker‐based heterozygosity‐fitness correlations may be driven by only one or a few markers, indicating local heterozygosity effects caused by linkage disequilibrium with functional genes. In this study, we investigated the relationship between microsatellite heterozygosity and a measure of cell‐mediated immunity (phytohaemagglutinin; PHA) in bluethroat (Luscinia s. svecica) nestlings using a full‐sibling design. We found significant positive associations between PHA response and two different indices of microsatellite heterozygosity, i.e. multi‐locus heterozygosity and mean d2. However, model comparisons disclosed that both associations were more likely caused by local effects rather than general effects and that the two local effects appeared to be realized through two different genetic mechanisms. Our results indicate that both the random assortment of parental chromosomes during meiosis as well as inbreeding can drive heterozygosity‐fitness correlations.  相似文献   

11.
Correlations between fitness and genome‐wide heterozygosity (heterozygosity‐fitness correlations, HFCs) have been reported across a wide range of taxa. The genetic basis of these correlations is controversial: do they arise from genome‐wide inbreeding (“general effects”) or the “local effects” of overdominant loci acting in linkage disequilibrium with neutral loci? In an asexual thelytokous lineage of the Cape honey bee (Apis mellifera capensis), the effects of inbreeding have been homogenized across the population, making this an ideal system in which to detect overdominant loci, and to make inferences about the importance of overdominance on HFCs in general. Here we investigate the pattern of zygosity along two chromosomes in 42 workers from the clonal Cape honey bee population. On chromosome III (which contains the sex‐locus, a gene that is homozygous‐lethal) and chromosome IV we show that the pattern of zygosity is characterized by loss of heterozygosity in short regions followed by the telomeric restoration of heterozygosity. We infer that at least four selectively overdominant genes maintain heterozygosity on chromosome III and three on chromosome IV via local effects acting on neutral markers in linkage disequilibrium. We conclude that heterozygote advantage and local effects may be more common and evolutionarily significant than is generally appreciated.  相似文献   

12.
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring‐tailed lemur (Lemur catta) as a model, we compared two populations under long‐term study: a relatively “open,” wild population (n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003–2013) and a “closed,” captive population (n = 121) derived from the Duke Lemur Center (DLC, 1980–2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC‐DRB diversity and, across populations, we compared the number of unique MHC‐DRB alleles and their distributions. Wild individuals possessed more MHC‐DRB alleles than did captive individuals, and overall, the wild population had more unique MHC‐DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive‐breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.  相似文献   

13.
Heterozygosity fitness correlations (HFCs) have frequently been used to detect inbreeding depression, under the assumption that genome‐wide heterozygosity is a good proxy for inbreeding. However, meta‐analyses of the association between fitness measures and individual heterozygosity have shown that often either no correlations are observed or the effect sizes are small. One of the reasons for this may be the absence of variance in inbreeding, a requisite for generating general‐effect HFCs. Recent work has highlighted identity disequilibrium (ID) as a measure that may capture variance in the level of inbreeding within a population; however, no thorough assessment of ID in natural populations has been conducted. In this meta‐analysis, we assess the magnitude of ID (as measured by the g2 statistic) from 50 previously published HFC studies and its relationship to the observed effect sizes of those studies. We then assess how much power the studies had to detect general‐effect HFCs, and the number of markers that would have been needed to generate a high expected correlation (r2 = 0.9) between observed heterozygosity and inbreeding. Across the majority of studies, g2 values were not significantly different than zero. Despite this, we found that the magnitude of g2 was associated with the average effect sizes observed in a population, even when point estimates were nonsignificant. These low values of g2 translated into low expected correlations between heterozygosity and inbreeding and suggest that many more markers than typically used are needed to robustly detect HFCs.  相似文献   

14.
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity versus genome-wide variability for the long-term viability of populations after bottlenecks and/or under high inbreeding is controversial. We tested the hypothesis that genome-wide inbreeding (estimated using microsatellites) should be more critical than MHC diversity alone in determining pathogen resistance in the self-fertilizing fish Kryptolebias marmoratus by analysing MHC diversity and parasite loads in natural and laboratory populations with different degrees of inbreeding. Both MHC and neutral diversities were lost after several generations of selfing, but we also found evidence of parasite selection acting on MHC diversity and of non-random loss of alleles, suggesting a possible selective advantage of those individuals with functionally divergent MHC, in accordance with the hypothesis of divergent allele advantage. Moreover, we found that parasite loads were better explained by including MHC diversity in the model than by genome-wide (microsatellites) heterozygosity alone. Our results suggest that immune-related overdominance could be the key in maintaining variables rates of selfing and outcrossing in K. marmoratus and other mixed-mating species.  相似文献   

15.
Ipomoea microdactyla Griseb. (Convolvulaceae) is restricted to the Bahamian archipelago, Cuba, and southeastern Florida. The species is listed as a state endangered species in Florida, where it is mostly restricted to the hyperfragmented pine rockland of Miami‐Dade County. Using seven DNA microsatellite loci, we assessed levels of genetic diversity for 12 populations of this species from Andros Island in the Bahamas (six sites), Cuba (one site), and Florida (five sites). We found significantly greater mean numbers of alleles, and higher mean values for both observed and expected heterozygosity in populations from the continuous forest on Andros than those from the habitat fragments in Florida. It is unknown if these patterns of genetic diversity in the Florida populations are the result of habitat fragmentation or founder effects. The population from Cuba exhibited relatively high levels of genetic variation, suggesting that this island is a major center of diversity and dispersal for this species. It appears that hybrid introgression for I. carolina alleles within I. microdactyla individuals occurred at a single site on Andros Island. Overall, the mean inbreeding coefficient value was 0.089, suggesting low levels of inbreeding. The highest inbreeding coefficient values were mostly recorded in Florida. Two groups were revealed, one containing the populations from Florida, and the second one encompassing those from the Bahamas and Cuba. Our results highlight the negative genetic consequences of habitat fragmentation and support initiatives recently established to establish corridors to connect the remnants of the pine forest of the Miami‐Dade County.  相似文献   

16.
The aims of this study were to assess the genetic diversity of 17 populations of Vietnamese local chickens (VNN) and one Red Jungle Fowl population, together with six chicken populations of Chinese origin (CNO), and to provide priorities supporting the conservation of genetic resources using 20 microsatellites. Consequently, the VNN populations exhibited a higher diversity than did CNO populations in terms of number of alleles but showed a slightly lower observed heterozygosity. The VNN populations showed in total seven private alleles, whereas no CNO private alleles were found. The expected heterozygosity of 0.576 in the VNN populations was higher than the observed heterozygosity of 0.490, leading to heterozygote deficiency within populations. This issue could be partly explained by the Wahlund effect due to fragmentation of several populations between chicken flocks. Molecular analysis of variance showed that most of genetic variation was found within VNN populations. The Bayesian clustering analysis showed that VNN and CNO chickens were separated into two distinct groups with little evidence for gene flow between them. Among the 24 populations, 13 were successfully assigned to their own cluster, whereas the structuring was not clear for the remaining 11 chicken populations. The contributions of 24 populations to the total genetic diversity were mostly consistent across two approaches, taking into account the within‐ and between‐populations genetic diversity and allelic richness. The black H'mong, Lien Minh, Luong Phuong and Red Jungle Fowl were ranked with the highest priorities for conservation according to Caballero and Toro's and Petit's approaches. In conclusion, a national strategy needs to be set up for Vietnamese chicken populations, with three main components: conservation of high‐priority breeds, within‐breed management with animal exchanges between flocks to avoid Wahlund effect and monitoring of inbreeding rate.  相似文献   

17.
Pathogen‐mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare‐allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range of antigens than homozygotes) is expected to be more detectable when multiple pathogens are considered simultaneously. Here, we test whether MHC diversity in a wild population of European badgers (Meles meles) is driven by pathogen‐mediated selection. We examined individual prevalence (infected or not), infection intensity and co‐infection of 13 pathogens from a range of taxa and examined their relationships with MHC class I and class II variability. This population has a variable, but relatively low, number of MHC alleles and is infected by a variety of naturally occurring pathogens, making it very suitable for the investigation of MHC–pathogen relationships. We found associations between pathogen infections and specific MHC haplotypes and alleles. Co‐infection status was not correlated with MHC heterozygosity, but there was evidence of heterozygote advantage against individual pathogen infections. This suggests that rare‐allele advantages and/or fluctuating selection, and heterozygote advantage are probably the selective forces shaping MHC diversity in this species. We show stronger evidence for MHC associations with infection intensity than for prevalence and conclude that examining both pathogen prevalence and infection intensity is important. Moreover, examination of a large number and diversity of pathogens, and both MHC class I and II genes (which have different functions), provide an improved understanding of the mechanisms driving MHC diversity.  相似文献   

18.
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

19.
Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC‐I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC‐I genotype/diversity on mate choice or survival. However, we demonstrate that MHC‐I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2–8 linked MHC‐I loci. Within‐locus homozygosity is high, contributing to low population‐wide diversity. Conversely, each individual had comparably many alleles, 6–16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within‐individual MHC‐I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species’ adaptive potential.  相似文献   

20.
Empirical support for the genetic management strategies employed by captive breeding and reintroduction programs is scarce. We evaluated the genetic management plan for the highly endangered black‐footed ferret (Mustela nigripes) developed by the American Zoo and Aquarium Associations (AZA) as a part of the species survival plan (SSP). We contrasted data collected from five microsatellite loci to predictions from a pedigree‐based kinship matrix analysis of the captive black‐footed ferret population. We compared genetic diversity among captive populations managed for continued captive breeding or reintroduction, and among wild‐born individuals from two reintroduced populations. Microsatellite data gave an accurate but only moderately precise estimate of heterozygosity. Genetic diversity was similar in captive populations maintained for breeding and release, and it appears that the recovery program will achieve its goal of maintaining 80% of the genetic diversity of the founder population over 25 years. Wild‐born individuals from reintroduced populations maintained genetic diversity and avoided close inbreeding. We detected small but measurable genetic differentiation between the reintroduced populations. The model of random mating predicted only slightly lower levels of heterozygosity retention compared to the SSP strategy. The random mating strategy may be a viable alternative for managing large, stable, captive populations such as that of the black‐footed ferret. Zoo Biol 22:287–298, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号