首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Reticulitermes flavipes (Isoptera: Rhinotermitidae) is a highly eusocial insect that thrives on recalcitrant lignocellulosic diets through nutritional symbioses with gut‐dwelling prokaryotes and eukaryotes. In the R. flavipes hindgut, there are up to 12 eukaryotic protozoan symbionts; the number of prokaryotic symbionts has been estimated in the hundreds. Despite its biological relevance, this diverse community, to date, has been investigated only by culture‐ and cloning‐dependent methods. Moreover, it is unclear how termite gut microbiomes respond to diet changes and what roles they play in lignocellulose digestion. This study utilized high‐throughput 454 pyrosequencing of 16S V5‐V6 amplicons to sample the hindgut lumen prokaryotic microbiota of R. flavipes and to examine compositional changes in response to lignin‐rich and lignin‐poor cellulose diets after a 7‐day feeding period. Of the ~475 000 high‐quality reads that were obtained, 99.9% were annotated as bacteria and 0.11% as archaea. Major bacterial phyla included Spirochaetes (24.9%), Elusimicrobia (19.8%), Firmicutes (17.8%), Bacteroidetes (14.1%), Proteobacteria (11.4%), Fibrobacteres (5.8%), Verrucomicrobia (2.0%), Actinobacteria (1.4%) and Tenericutes (1.3%). The R. flavipes hindgut lumen prokaryotic microbiota was found to contain over 4761 species‐level phylotypes. However, diet‐dependent shifts were not statistically significant or uniform across colonies, suggesting significant environmental and/or host genetic impacts on colony‐level microbiome composition. These results provide insights into termite gut microbiome diversity and suggest that (i) the prokaryotic gut microbiota is much more complex than previously estimated, and (ii) environment, founding reproductive pair effects and/or host genetics influence microbiome composition.  相似文献   

3.
Host‐restricted lineages of gut bacteria often include many closely related strains, but this fine‐scale diversity is rarely investigated. The specialized gut symbiont Snodgrassella alvi has codiversified with honeybees (Apis mellifera) and bumblebees (Bombus) for millions of years. Snodgrassella alvi strains are nearly identical for 16S rRNA gene sequences but have distinct gene repertoires potentially affecting host biology and community interactions. We examined S. alvi strain diversity within and between hosts using deep sequencing both of a single‐copy coding gene (minD) and of the V4 region of the 16S rRNA gene. We sampled workers from domestic and feral A. mellifera colonies and wild‐caught Bombus representing 14 species. Conventional analyses of community profiles, based on the V4 region of the 16S rRNA gene, failed to expose most strain variation. In contrast, the minD analysis revealed extensive strain variation within and between host species and individuals. Snodgrassella alvi strain diversity is significantly higher in A. mellifera than in Bombus, supporting the hypothesis that colony founding by swarms of workers enables retention of more diversity than colony founding by a single queen. Most Bombus individuals (72%) are dominated by a single S. alvi strain, whereas most A. mellifera (86%) possess multiple strains. No S. alvi strains are shared between A. mellifera and Bombus, indicating some host specificity. Among Bombus‐restricted strains, some are restricted to a single host species or subgenus, while others occur in multiple subgenera. Findings demonstrate that strains diversify both within and between host species and can be highly specific or relatively generalized in their host associations.  相似文献   

4.
How long‐term antibiotic treatment affects host bacterial associations is still largely unknown. The honeybee‐gut microbiota has a simple composition, so we used this gut community to investigate how long‐term antibiotic treatment affects host‐associated microbiota. We investigated the phylogenetic relatedness, genomic content (GC percentage, genome size, number of genes and CRISPR) and antibiotic‐resistant genes (ARG) for strains from two abundant members of the honeybee core gut microbiota (Gilliamella apicola and Snodgrassella alvi). Domesticated honeybees are subjected to geographically different management policies, so we used two research apiaries, representing different antibiotic treatment regimens in their apiculture: low antibiotic usage (Norway) and high antibiotic usage (Arizona, USA). We applied whole‐genome shotgun sequencing on 48 G. apicola and 22 S. alvi. We identified three predominating subgroups of G. apicola in honeybees from both Norway and Arizona. For G. apicola, genetic content substantially varied between subgroups and distance similarity calculations showed similarity discrepancy between subgroups. Functional differences between subgroups, such as pectin‐degrading enzymes (G. apicola), were also identified. In addition, we identified horizontal gene transfer (HGT) of transposon (Tn10)‐associated tetracycline resistance (Tet B) across the G. apicola subgroups in the Arizonan honeybees, using interspace polymorphisms in the Tet B determinant. Our results support that honeybee‐gut symbiont subgroups can resist long‐term antibiotic treatment and maintain functionality through acquisition of geographically distinct antibiotic‐resistant genes by HGT.  相似文献   

5.
Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky‐31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host‐grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë‐associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high‐ or low‐endophyte infection rate were broadcast seeded into 2 × 2‐m plots in a tilled, old‐field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co‐occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high‐endophyte S. pratensis increased plant richness relative to low‐endophyte cultivars. However, as expected, high‐endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co‐occurring biotic communities.  相似文献   

6.
Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l−1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes – Snodgrassella alvi and Lactobacillus bombicola – in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001–10 mg l−1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.  相似文献   

7.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

8.
High‐throughput sequencing is revealing that most macro‐organisms house diverse microbial communities. Of particular interest are disease vectors whose microbiome could potentially affect pathogen transmission and vector competence. We investigated bacterial community composition and diversity of the ticks Dermacentor variabilis (n = 68) and Ixodes scapularis (n = 15) and blood of their shared rodent host, Peromyscus leucopus (n = 45) to quantify bacterial diversity and concordance. The 16S rRNA gene was amplified from genomic DNA from field‐collected tick and rodent blood samples, and 454 pyrosequencing was used to elucidate their bacterial communities. After quality control, over 300 000 sequences were obtained and classified into 118 operational taxonomic units (OTUs, clustered at 97% similarity). Analysis of rarefied communities revealed that the most abundant OTUs were tick species‐specific endosymbionts, Francisella and Rickettsia, and the commonly flea‐associated bacterium Bartonella in rodent blood. An Arsenophonus and additional Francisella endosymbiont were also present in D. variabilis samples. Rickettsia was found in both tick species but not in rodent blood, suggesting that it is not transmitted during feeding. Bartonella was present in larvae and nymphs of both tick species, even those scored as unengorged. Relatively, few OTUs (e.g. Bartonella, Lactobacillus) were found in all sample types. Overall, bacterial communities from each sample type were significantly different and highly structured, independent of their dominant OTUs. Our results point to complex microbial assemblages inhabiting ticks and host blood including infectious agents, tick‐specific endosymbionts and environmental bacteria that could potentially affect arthropod‐vectored disease dynamics.  相似文献   

9.
In just a few years, the Asian fly Drosophila suzukii has invaded several continents and has become a very serious pest of many fruit crops worldwide. Current control methods rely on chemical insecticides or expensive and labour‐intensive cultural practices. Classical biological control through the introduction of Asian parasitoids that have co‐evolved with the pest may provide a sustainable solution on condition that they are sufficiently specific to avoid non‐target effects on local biodiversity. Here, we present the first study on the development of three larval parasitoids from China and Japan, the Braconidae Asobara japonica and the Figitidae Leptopilina japonica and Ganaspis sp., on D. suzukii. The Asian parasitoids were compared with Leptopilina heterotoma, a common parasitoid of several Drosophilidae worldwide. The three Asian species were successfully reared on D. suzukii larvae in both, blueberry and artificial diet, in contrast to L. heterotoma whose eggs and larvae were encapsulated by the host larvae. All parasitoids were able to oviposit one day after emergence. Asobara japonica laid as many eggs in larvae feeding in blueberry as in artificial diet, whereas L. heterotoma oviposited more in larvae on the artificial diet and the Asian Figitidae oviposited more in larvae feeding on blueberry. Ganaspis sp. laid very few eggs in larvae in the artificial diet, suggesting that it may be specialized in Drosophila species living in fresh fruits. These data will be used for the development of a host range testing to assess the suitability of Asian parasitoids as biological control agents in invaded regions.  相似文献   

10.
The invasive frugivore Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) utilizes a wide range of host plants and damages important fruit crops, including blueberries, cherries, blackberries, raspberries, and strawberries. Field infestations of D. suzukii often exceed one larva per berry, suggesting that intraspecific competition may frequently occur. Because dietary resources are also likely to vary across the host range of D. suzukii, we designed a laboratory assay to measure larval performance across diets of varying quality: a standard artificial diet, a fruit‐based medium, a low‐protein, and a low‐carbohydrate diet. We manipulated egg density across these diets to provide increasing levels of competition and measured larval performance by observing survival to pupation and adulthood, and development times for both life stages. Although increasing density generally negatively impacted D. suzukii performance across diets, the magnitude of these impacts varied by diet type. Drosophila suzukii performance was generally similar in fruit and standard diets, although larval development was more rapid in fruit diets at lower densities. Even at low densities (5 or 10 eggs per arena), survival was reduced and development time increased in low‐protein diets relative to standard and fruit diets. At the two highest larval densities (20 or 40 eggs per arena), survivorship was reduced in low‐carbohydrate diets as compared to standard and fruit diets. There is evidence that larvae compensated in both low‐quality diets by extending development time, which could have consequences for population dynamics. Population models for use in D. suzukii management may need to account for both host nutritional quality and relative competition to accurately predict turnover and geographic expansion.  相似文献   

11.
Artificial diets have been developed to sustain the mass rearing of a wide range of arthropod natural enemies, with varying success. In some cases, such diets can be optimized using insect‐derived materials, such as haemolymph. In this study, we examined the effect of supplementing haemolymph of the black soldier fly, Hermetia illucens, to a basic artificial diet for the phytoseiid mite Amblyseius swirskii. The survival, development and reproduction of the predatory mite were assessed when fed on artificial diets composed of honey, sucrose, tryptone, yeast extract and egg yolk, supplemented with 5%, 10%, or 20% of H. illucens pre‐pupal haemolymph. Developmental time from larva to adult was shorter for males and females offered artificial diets supplemented with 20% haemolymph vs. the basic diet. The oviposition rate and total fecundity of females reared on the basic diet were substantially lower than those of females supplied with the enriched diets. The intrinsic rate of increase was highest on the diet containing 20% haemolymph, followed by those containing 10% and 5% haemolymph. In a subsequent diet‐switching experiment, mites fed on the basic diet in their juvenile stages were switched upon adulthood to diet enriched with different concentrations of H. illucens haemolymph. The females that were fed with the enriched diets from the adult stage on had higher oviposition rates and fecundities than those maintained on the basic diet, but their reproductive parameters were not significantly affected by the concentration of the haemolymph in the artificial diet. In conclusion, supplementing artificial diets with black soldier fly haemolymph significantly improved their nutritional value for A. swirskii. Our findings indicate the potential of using H. illucens as a cheap source for haemolymph in artificial diets, as the fly can be cost‐effectively produced at a large scale on organic waste materials.  相似文献   

12.
Sponges occur across diverse marine biomes and host internal microbial communities that can provide critical ecological functions. While strong patterns of host specificity have been observed consistently in sponge microbiomes, the precise ecological relationships between hosts and their symbiotic microbial communities remain to be fully delineated. In the current study, we investigate the relative roles of host population genetics and biogeography in structuring the microbial communities hosted by the excavating sponge Cliona delitrix. A total of 53 samples, previously used to demarcate the population genetic structure of C. delitrix, were selected from two locations in the Caribbean Sea and from eight locations across the reefs of Florida and the Bahamas. Microbial community diversity and composition were measured using Illumina‐based high‐throughput sequencing of the 16S rRNA V4 region and related to host population structure and geographic distribution. Most operational taxonomic units (OTUs) specific to Cliona delitrix microbiomes were rare, while other OTUs were shared with congeneric hosts. Across a large regional scale (>1,000 km), geographic distance was associated with considerable variability of the sponge microbiome, suggesting a distance–decay relationship, but little impact over smaller spatial scales (<300 km) was observed. Host population structure had a moderate effect on the structure of these microbial communities, regardless of geographic distance. These results support the interplay between geographic, environmental, and host factors as forces determining the community structure of microbiomes associated with C. delitrix. Moreover, these data suggest that the mechanisms of host regulation can be observed at the population genetic scale, prior to the onset of speciation.  相似文献   

13.
Plants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure – the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species. The microbiome of Nicotiana attenuata seeds was determined by a culture‐dependent and culture‐independent approach, and the root microbiome of natural N. attenuata populations from five different locations was analysed using 454‐pyrosequencing. To specifically address the influence of UVB light on root colonization by Deinococcus, a genus abundant and consistently present in N. attenuata roots, transgenic lines impaired in UVB perception (irUVR8) and response (irCHAL) were investigated in a microcosm experiment with/without UVB supplementation using a synthetic bacterial community. The seed microbiome analysis indicated that N. attenuata seeds are sterile. Alpha and beta diversities of native root bacterial communities differed significantly between soil and root, while location had only a significant effect on the fungal but not the bacterial root communities. With UVB supplementation, root colonization of Deinococcus increased in wild type, but decreased in irUVR8 and irCHAL plants compared to nontreated plants. Our results suggest that N. attenuata recruits a core root microbiome exclusively from soil, with fungal root colonization being less selective than bacterial colonization. Root colonization by Deinococcus depends on the plant's response to UVB.  相似文献   

14.
Plant defensive compounds can have sometimes severe deleterious effects on both herbivores and their natural enemies. Iridoid glycosides (IGs) are defensive compounds that are well established as deterrent to several generalist herbivores and generalist predators. Trichoplusia ni Hübner (Lepidoptera: Noctuidae) is exceptional among generalist herbivores for its ability to tolerate and thrive when feeding upon IG‐producing plant species; however, it is not known whether the compounds themselves have a harmful effect on T. ni and whether the effects in turn affect its oligophagous endoparasitoid Copidosoma floridanum Ashmead (Hymenoptera: Encyrtidae). To examine these effects, a semi‐purified extract of the IG‐containing plant Plantago lanceolata L. (Plantaginaceae), containing the IGs aucubin and catalpol, was added to artificial diets at 0, 1, 5, or 10% diet dry weight. These diets were fed to both C. floridanum‐parasitized and unparasitized T. ni. Diets higher in IGs tended to be more toxic to both parasitized and unparasitized larvae: host larvae that did survive were slightly smaller and took longer to develop on higher IG diets and total clutch size and survival of the parasitoid C. floridanum were greatly reduced as the host's dietary intake of IGs increased. Only small amounts of aucubin were detected inside the T. ni hemocoel, suggesting that the negative effect of these compounds on C. floridanum is due to nutritional quality of the host being reduced rather than direct toxic effects of the compounds.  相似文献   

15.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

16.
Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host‐plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host‐plant defenses a 1.4‐fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1‐stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5‐fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3‐fold) and Wolbachia increasing (1.5‐fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi‐locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host‐symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.  相似文献   

17.
18.
19.
Vector‐borne pathogens are increasingly found to interact with the vector's microbiome, influencing disease transmission dynamics. However, the processes that regulate the formation and development of the microbiome are largely unexplored for most tick species, an emerging group of disease vectors. It is not known how much of the tick microbiome is acquired through vertical transmission vs. horizontally from the environment or interactions with bloodmeal sources. Using 16S rRNA sequencing, we examined the microbiome of Ixodes pacificus, the vector of Lyme disease in the western USA, across life stages and infection status. We also characterized microbiome diversity in field and laboratory‐collected nymphal ticks to determine how the surrounding environment affects microbiome diversity. We found a decrease in both species richness and evenness as the tick matures from larva to adult. When the dominant Rickettsial endosymbiont was computationally removed from the tick microbial community, we found that infected nymphs had lower species evenness than uninfected ticks, suggesting that lower microbiome diversity is associated with pathogen transmission in wild‐type ticks. Furthermore, laboratory‐reared nymph microbiome diversity was found to be compositionally distinct and significantly depauperate relative to field‐collected nymphs. These results highlight unique patterns in the microbial community of I. pacificus that is distinct from other tick species. We provide strong evidence that ticks acquire a significant portion of their microbiome through exposure to their environment despite a loss of overall diversity through life stages. We provide evidence that loss of microbial diversity is at least in part due to elimination of microbial diversity with bloodmeal feeding but other factors may also play a role.  相似文献   

20.
  • The facultative root hemi‐parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi‐parasite.
  • Ten seed lots from commercial sources were sown in the field and their germination characteristics investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi‐parasite, while plant biomass was measured for both R. minor and its host.
  • Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots.
  • Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi‐parasite on community productivity and diversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号