首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six male New Zealand white rabbits were individually exposed to 600 MHz radiofrequency (RF) radiation for 90 min in a waveguide exposure system at an ambient temperature (Ta) of 20 or 30 degrees C. Immediately after exposure, the rabbit was removed from the exposure chamber and its colonic and ear skin temperatures were quickly measured. The whole-body specific absorption rate (SAR) required to increase colonic and ear skin temperature was determined. At a Ta of 20 degrees C the threshold SAR for elevating colonic and ear skin temperature was 0.64 and 0.26 W/kg, respectively. At a Ta of 30 degrees C the threshold SARs were slightly less than at 20 degrees C, with values of 0.26 W/kg for elevating colonic temperature and 0.19 W/kg for elevating ear skin temperature. The relationship between heat load and elevation in deep body temperature shown in this study at 600 MHz is similar to past studies which employed much higher frequencies of RF radiation (2450-2884 MHz). On the other hand, comparison of these data with studies on exercise-induced heat production and thermoregulation in the rabbit suggest that the relationship between heat gain and elevation in body temperature in exercise and from exposure to RF radiation may differ considerably. When combined with other studies, it was shown that the logarithm of the SAR required for a 1.0 degree C elevation in deep body temperature of the rabbit, rat, hamster, and mouse was inversely related to the logarithm of body mass. The results of this study are consistent with the conclusion that body mass strongly influences thermoregulatory sensitivity of the aforementioned laboratory mammals during exposure to RF radiation.  相似文献   

2.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

3.
The physiological changes in male rats during acclimation were studied following direct or stepwise exposure to heat (32.5 degrees C) in a controlled-environment room. The animals were exposed to each temperature for 10 days beginning at 24.5 degrees C and returning to 24.5 degrees C in the reverse order of initial exposure. Relative humidity of 50 +/- 2% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Physiological changes in metabolic rate (MR), evaporative water loss (EWL), plasma corticosterone, body water turnover, and food and water intake were measured. The results indicate a significantly (P less than 0.001) elevated plasma corticosterone and MR in rats exposed directly to heat from control temperature (24.5 degrees C) but not in those animals exposed stepwise via 29.0 degrees C. All kinetic parameters of water pool changed (P less than 0.01) on direct exposure to heat, whereas rats exposed in a stepwise manner increased only pool turnover. In addition, exposure to experimental temperatures resulted in reduced (P less than 0.05) relative food intake and increased (P less than 0.05) water intake. Compared with the control condition of 24.5 degrees C, EWL was significantly (P less than 0.05) elevated when the animals were exposed either directly or in a stepwise fashion to 32.5 degrees C. These data suggest that the response to elevated temperatures is influenced by the temperature to which the rat is acclimated.  相似文献   

4.
1. Colonic and tail skin temperature of the unrestrained Fischer rat were measured immediately after a 90 min exposure to 600 MHz radiofrequency radiation in a waveguide-type system. Ambient temperature (Ta) was maintained at either 20, 28 or 35 degrees C. The specific absorption rate (SAR) in dimensions of W/kg was controlled at a constant level through a feedback control circuit. 2. The SAR needed to elevate colonic and tail skin temperature decreased with increasing Ta. For example, a 0.5 degrees C elevation in colonic temperature occurred at SARs of 4.3, 0.9 and 0.5 W/kg when Ta was maintained at 20, 28 and 35 degrees C, respectively. 3. Data from the present study were combined with data from earlier studies to assess the impact of varying Ta on the thermogenic effect of RF radiation in different species. In species ranging in mass from 0.02 to 3.2 kg, a double logarithmic plot of body mass versus SAR needed to elevate colonic temperature by 0.5 degrees C was linear and inverse with a high goodness of fit (r2 = -0.94). 4. The highly correlated allometric relationship shows that, as body mass decreases, the relative impact of Ta on the thermogenic effect of RF radiation increases.  相似文献   

5.
The effects of hypoxia on thermoregulation and ventilatory control were studied in conscious rats before and after carotid denervation (CD). Measurements of metabolic rate (VO2), ventilation (V), shivering intensity (SI), and colonic temperature (Tc) were made in groups of eight rats subjected to three protocols. In protocols 1 and 2, at ambient temperature (Ta) of 25 and 5 degrees C, respectively, rats were exposed to normoxia and hypoxia [inspired O2 fraction (FIO2) 0.13-0.11]. In protocol 3, Ta was decreased from 25 to 5 degrees C in 30-min steps of 5 degrees C. Recordings were made in normoxia and hypoxia (FIO2 0.12). The results show that in both intact and CD rats 1) in normoxia, cold exposure increased VO2, V, and SI, and these increases were proportional to the decrease in Ta; 2) hypoxia induced only a transient decrease in SI, and, for a given Ta, VO2 was reduced whereas V and SI were increased; and 3) in CD rats, V increased less during cold exposure in both normoxia and hypoxia; VO2 and Tc were more depressed during hypoxia. It is concluded that 1) the interaction between Ta and FIO2 in the control of V is partly dependent on the carotid body afferents, 2) shivering thermogenesis may be transiently affected by hypoxia independently of the carotid body afferents, and 3) nonshivering thermogenesis may be directly inhibited by hypoxia, especially during cold exposure.  相似文献   

6.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

7.
The metabolic, thermal, and cardiovascular responses of two male Caucasians to 1 2 h exposure to ambient temperature ranging between 28 degrees C and 5 degrees C were studied and related to the respective ambient temperatures. The metabolic heat production increased linearly with decreasing ambient temperature, where heat production (kcal times m- minus 2 times h- minus 1) = minus 2.79 Ta degrees C + 103.4, r = -0.97, P smaller than 0.001. During all exposures below 28 degrees C, the rate of decrease in mean skin temperature (Tsk) was found to be an exponential function dependent upon the ambient temperature (Ta) and the time of exposure. Reestablishment of Tsk steady state occurred at 90-120 min of exposure, and the time needed to attain steady state was linearly related to decreasing Ta. The net result was that a constant ratio of 1.5 of the external thermal gradient to the internal thermal gradient was obtained, and at all experimental temperatures, the whole body heat transfer coefficient remained constant. Cardiac output was inversely related to decreasing Ta, where cardiac output (Q) = minus 0.25 Ta degrees C + 14.0, r = minus 0.92, P smaller than 0.01. However, the primary reason for the increased Q, the stroke output, was also described as a third-order polynomial, although the increasing stroke volume throughout the Ta range (28-5 degrees C) was linearly related to decreasing ambients. The non-linear response of this parameter which occurred at 20 degrees C larger than or equal to Ta larger than or equal to 10 degrees C suggested that the organism's cardiac output response was an integration of the depressed heart rate response and the increasing stroke output at these temperatures.  相似文献   

8.
Either systemic or central administration of apomorphine produced dose-related decreases in rectal temperature at ambient temperatures (Ta) of 8 and 22 degrees C in rats. At Ta = 8 degrees C, the hypothermia was brought about by a decrease in metabolic rate (M). At Ta = 22 degrees C, the hypothermia was due to an increase in mean skin temperature, an increase in respiratory evaporative heat loss (Eres) and a decrease in M. This increased mean skin temperature was due to increased tail and foot skin temperatures. However, at Ta = 29 degrees C, apomorphine produced increased rectal temperatures due to increased M and decreased Eres. Moreover, the apomorphine-induced hypothermia or hyperthermia was antagonized by either haloperidol or 6-hydroxydopamine, but not by 5,6-dihydroxytryptamine. The data indicate that apomorphine acts on dopamine neurons within brain, with both pre- and post-synaptic sites of action, to influence body temperature.  相似文献   

9.
Experiments were conducted in the field to study the physiological responses of dik-dik antelope to direct solar radiation and shade. The results were compared to those obtained in the laboratory. The rates of metabolic heat production when the animals were exposed either to the sun or the shade were identical. Dik-dik antelopes lost about 50% more heat evaporatively when exposed to the sun compared to the shade at an ambient temperature (Ta) of 28 degrees C or a Ta of 40 degrees C in a climatic chamber. Heat storage in the laboratory at Ta 40 degrees C or at Ta 28 degrees C in the shade accounted for between 30 and 35% of the total heat production. The corresponding value in the sun was 55%. The net rate of heat gain under the sun was four times greater than under shade at 28 degrees C or in the laboratory at 40 degrees C. Behavioural mechanisms for avoidance of high insolation must constitute important adaptations that the dik-dik uses to avoid dehydration and dependence on drinking water in their natural environment.  相似文献   

10.
The present study examined the heat loss response of heat-acclimated rats to direct body heating with an intraperitoneal heater or to indirect warming by elevating the ambient temperature (Ta). The heat acclimation of the rats was attained through exposure to Ta of 33 or 36 degrees C for 5 h daily during 15 consecutive days. Control rats were kept at Ta of 24 degrees C for the same acclimation period. Heat acclimation lowered the body core temperature at Ta of 24 degrees C, and the core temperature level was lowered as acclimation temperature increased. When heat was applied by direct body heating, the threshold hypothalamic temperature (Thy) for the tail skin vasodilation was also lower in heat-acclimated rats than in the control rats. However, the amount of increase in Thy from the resting level to the threshold was the same in all three groups. When heat was applied by indirect warming, threshold Thy was slightly higher in heat-acclimated than in control rats. The amount of increase in Thy from the resting level to the threshold was significantly greater in heat-acclimated rats. In addition, Ta and the skin temperature at the onset of skin vasodilation were significantly higher in heat-acclimated rats. The results indicate that heat-acclimated rats were less sensitive to the increase in skin temperature in terms of threshold Thy. The gain constant of nonevaporative heat loss response was assessed by plotting total thermal conductance against Thy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A previous study showed a substantial increase in the colonic temperature of rhesus monkeys (Macaca mulatta) exposed to radiofrequency (RF) fields at a frequency near whole-body resonance and specific absorption rates (SAR) of 2-3 W/kg. The present experiments were conducted to determine the metabolic and vasomotor responses during exposures to similar RF fields. We exposed five adult male rhesus monkeys to 225 MHz radiation (E orientation) in an anechoic chamber. Oxygen consumption and carbon dioxide production were measured before, during, and after RF exposure. Colonic, tail and leg skin temperatures were continuously monitored with RF-nonperturbing probes. The monkeys were irradiated at two carefully-controlled ambient temperatures, either cool (20 degrees C) or thermoneutral (26 degrees C). Power densities ranged from 0 (sham) to 10.0 mW/cm2 with an average whole-body SAR of 0.285 (W/kg)/(mW/cm2). We used two experimental protocols, each of which began with a 120-min pre-exposure equilibration period. One protocol involved repetitive 10-min RF exposures at successively higher power densities with a recovery period between exposures. In the second protocol, a 120-min RF exposure permitted the measurement of steady-state thermoregulatory responses. Metabolic and vasomotor adjustments in the rhesus monkey exposed to 225 MHz occurred during brief or sustained exposures at SARs at or above 1.4 W/kg. The SAR required to produce a given response varied with ambient temperature. Metabolic and vasomotor responses were coordinated effectively to produce a stable deep body temperature. The results show that the thermoregulatory response of the rhesus monkey to an RF exposure at a resonant frequency limits storage of heat in the body. However, substantial increases in colonic temperature were not prevented by such responses, even in a cool environment.  相似文献   

12.
The effect of acetysalicylic acid (aspirin) on thermoregulation in a warm environment was studied in hydrated and dehydrated adult rats to test the hypothesis that dehydration hyperthermia can be modified by an antipyretic drug. Metabolic rate (MR), evaporative water loss (EWL), and deep body temperature (Tb) were measured during 2 h of exposure to an ambient temperature of 36 degrees C after the rats had received an oral pellet of aspirin (100 mg.kg-1) or placebo. The dehydrated placebo group had a higher Tb and lower EWL than the hydrated placebo group. Aspirin increased MR and EWL in both hydrated and dehydrated animals. Aspirin did not affect Tb in hydrated rats, but reduced Tb by 0.2 degree C in dehydrated rats during the heat exposure. The elevation in EWL appears to be a thermoregulatory response to increased heat production in both hydrated and dehydrated animals after aspirin treatment. The possibility that aspirin may act in dehydrated animals to restore central thermosensitivity toward hydrated levels needs to be tested further.  相似文献   

13.
Compared with other rat strains, the inbred FOK rat is extremely heat tolerant. This increased heat tolerance is due largely to the animal's enhanced saliva spreading abilities. The aims of the present study were to 1) quantify the heat tolerance capacity of FOK rats and 2) determine the regulatory mode of the enhanced salivary cooling in these animals. Various strains of rats were acutely exposed to heat. In the heat-intolerant strains, saliva spreading was insufficient and the core temperature (Tc) rose rapidly. In contrast, FOK rats maintained an elevated Tc plateau (39.5 +/- 0.7 degrees C) for 5-6 h over a wide range of ambient temperatures (Ta) (37.5-42.5 degrees C). In hot environments the FOK rats secreted copious amounts of saliva and spread it over more than the entire ventral body surface. FOK rats had a low Tc threshold for salivation, and the salivation rate increased linearly in proportion to the Tc deviation from the threshold. No strain difference or temperature effect was observed in the saliva secretion rate from in vitro submandibular glands perfused by sufficient doses of ACh. These results suggest that 1) the ability of FOK rats to maintain a moderate steady-state hyperthermia (39.5 +/- 0.7 degrees C) over a wide Ta range is enabled by a lowered threshold Tc for salivation and functional negative-feedback control of saliva secretion and 2) strain differences in ability to endure heat stress are mainly attributable to changes in the thermoregulatory control system rather than altered secretory abilities of the salivary glands.  相似文献   

14.
The febrile responses of Sprague-Dawley rats to semi-purified human endogenous pyrogen were studied at a thermoneutral ambient temperature (26 degrees C) and in the cold (3 degrees C). It was found that while rats developed typical monophasic febrile responses at thermoneutrality, febrile responses were absent in the cold-exposed rats. Experiments were conducted to determine whether this lack of febrile responses in cold-exposed rats was due to an inability of these animals to generate or retain heat in the cold. Thermogenesis and vasoconstriction were stimulated in cold-exposed rats by selectively cooling the hypothalamus, using chronically implanted thermodes. It was shown that, using this stimulus, metabolic rate could be increased by more than 50 percent and body temperature could be driven up at a rate of 5 degrees C/hour in rats exposed to the cold. Therefore, it was concluded that the lack of febrile responses of cold-exposed rats to pyrogen is in no way due to a physical or physiological inability to retain heat. Instead, it appears that in some manner cold exposure suppresses the sensitivity or responsiveness of the rat to pyrogenic stimuli.  相似文献   

15.
Thermoregulatory benefits of cold-induced changes in breathing pattern and mechanism(s) by which cold induces hypoventilation were investigated using male Holstein calves (1-3 mo old). Effects of ambient temperatures (Ta) between 4 and 18 degrees C on ventilatory parameters and respiratory heat loss (RHL) were determined in four calves. As Ta decreased, respiratory frequency decreased 29%, tidal volume increased 35%, total ventilation and RHL did not change, and the percentage of metabolic rate attributed to RHL decreased 26%. Total ventilation was stimulated by increasing inspired CO2 in six calves (Ta 4-6 degrees C), and a positive relationship existed between respiratory frequency and expired air temperature. Therefore, cold-exposed calves conserve respiratory heat by decreasing expired air temperature and dead space ventilation. Compared with thermoneutral exposure (16-18 degrees C), hypoventilation was induced by airway cold exposure (4-6 degrees C) alone and by exposing the body but not the airways to cold. Blocking nasal thermoreceptors with topical lidocaine during airway cold exposure prevented the ventilatory response but did not lower hypothalamic temperature. Hypothalamic cooling (Ta 16-18 degrees C) did not produce a ventilatory response. Thus, airway temperature but not hypothalamic temperature appears to control ventilation in cold-exposed calves.  相似文献   

16.
In this study the influence of acute (6 hr) exposure to 2450 MHz (CW) microwave radiation on certain cardiovascular, biochemical, and hematologic indices was examined in unanesthetized rats. Under methoxyflurane anesthesia, a catheter was inserted into the right femoral artery, which was used for monitoring blood pressure, heart rate, and blood sampling. Colonic temperature was monitored via a VITEK thermistor probe inserted rectally to a depth of 5 cm. The rat was subsequently placed into a ventilated restraining cage which was located inside an anechoic chamber. The temperature and humidity in the chamber were maintained at 22 +/- 0.5 degrees C and 60 +/- 5% (means +/- S.E.), respectively, during the experimental period. Rats (60) were exposed to either 0 (sham) or 10 mW/cm2 (exposed) for 6 hr. During exposure rats were oriented perpendicular to the E-field, and the measured specific absorption rate (SAR) was 3.7 mW/g. In the sham and exposed rats, the preexposure (time 0) mean +/- S.E. arterial blood pressure (MABP), heart rate, and colonic temperature were approximately 120 +/- 5 mmHg, 450 +/- 10 beats/min, and 37.0 +/- 0.2 degrees C, respectively. In the sham-exposed rats these values remained stable throughout the 6-hr exposure period. In the exposed rats, no effects were noted on MABP or colonic temperature; however after 1 hr of exposure, a significant reduction in heart rate was noted (450 versus 400 beats/min). This decrease in heart rate persisted throughout the remainder of the exposure period. None of the hematologic or biochemical parameters examined were affected by the microwave exposure. Although other mechanisms may be responsible, this decrease in heart rate may have been due to subtle cardiovascular adjustments because of microwave-induced heating with a resultant reduction in resting metabolic rate.  相似文献   

17.
In loosely-restrained adult conscious rats exposed to stepwise changes in ambient temperature (T(a)) from 25 to 5 degrees C or from 20 to 35 degrees C, we have recorded body and tail temperatures, metabolic rate (VO(2)), shivering and ventilation (V). It was found that VO(2) and V vary with T(a) and show a nadir for a T(a) of 30 degrees C whereas shivering starts at 20 degrees C and increases progressively with cold exposure. T(tail) follows changes in T(a) whereas T(body) decreases slightly in cold and increases markedly in warm exposure. These results suggest that the control of T(body) interacts with the control of breathing in order to increase VO(2) during cold exposure and to facilitate evaporative respiratory heat dissipation during warm exposure.  相似文献   

18.
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.  相似文献   

19.
The Angolan free-tailed bat (Mops condylurus) uses roosts that often exceed 40 degrees C, an ambient temperature (Ta) that is lethal to many microchiropterans. We measured the physiological responses of this species at Ta's from 15 degrees to 45 degrees C. Torpor was commonly employed during the day at the lower Ta, but the bats generally remained euthermic at night, with a mean body temperature (Tb) of 35.2 degrees C. Metabolic rate reflected the pattern of Tb, increasing with falling Ta at night but decreasing during the day. Metabolic rate and evaporative losses were lower in torpid than in euthermic bats. Body temperature increased at each Ta >35 degrees C and was 43 degrees C at Ta of 45 degrees C. At Ta of 40 degrees C bats increased dry thermal conductance and evaporative heat loss compared to lower Ta. At 45 degrees C dry thermal conductance was lower than at 40 degrees C and evaporative heat loss was 132% of metabolic heat production. At high Ta there was only a slight increase in metabolic rate despite the employment of evaporative cooling mechanisms and an increase in Tb. Collectively our results suggest that M. condylurus is well suited to tolerate high Ta, and this may enable it to exploit thermally challenging roost sites and to colonise habitats and exploit food sources where less stressful roosts are limiting.  相似文献   

20.
N-nitro-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase inhibitor, was administered to individually caged Sprague-Dawley rats exposed to cold (18 degrees C) and thermoneutral (30 degrees C) environmental temperatures during the active phase of the animals' circadian cycle. Unrestrained rats were administered intraperitoneal injections of 100 mg x kg-1 L-NAME or 1 mL x kg-1 saline. Telemetry was used to measure abdominal temperature. On a separate occasion, metabolic rate and evaporative water loss were measured using indirect calorimetery, before and after the injection of 100 mg x kg-1 L-NAME, in rats exposed to the two environments. Injection of L-NAME had no significant effect on body temperature, metabolic rate, or evaporative water loss in rats exposed to the 30 degrees C environment. In the 18 degrees C environment, L-NAME injection caused a prolonged fall in body temperature ( F(1,12) = 17.43, P = 0.001) and a significant decrease in metabolic rate (Student's t test, P = 0.001) and evaporative water loss (one-sample t test, P = 0.04). Therefore, the effects that systemic injection of L-NAME has on body temperature are dependent on environmental temperature, with nitric oxide synthase inhibition seemingly preventing the metabolic component of cold defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号