首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

2.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the KM of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the KM observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   

3.
The pathogenic mechanism of a G44A nonsense mutation in the NDUFS4 gene and a C1564A mutation in the NDUFS1 gene of respiratory chain complex I was investigated in fibroblasts from human patients. As previously observed the NDUFS4 mutation prevented complete assembly of the complex and caused full suppression of the activity. The mutation (Q522K replacement) in NDUFS1 gene, coding for the 75-kDa Fe-S subunit of the complex, was associated with (a) reduced level of the mature complex, (b) marked, albeit not complete, inhibition of the activity, (c) accumulation of H(2)O(2) and O(2)(.-) in mitochondria, (d) decreased cellular content of glutathione, (e) enhanced expression and activity of glutathione peroxidase, and (f) decrease of the mitochondrial potential and enhanced mitochondrial susceptibility to reactive oxygen species (ROS) damage. No ROS increase was observed in the NDUFS4 mutation. Exposure of the NDUFS1 mutant fibroblasts to dibutyryl-cAMP stimulated the residual NADH-ubiquinone oxidoreductase activity, induced disappearance of ROS, and restored the mitochondrial potential. These are relevant observations for a possible therapeutical strategy in NDUFS1 mutant patients.  相似文献   

4.
Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

5.
The impact of cAMP on ROS-balance in human and mammalian cell cultures was studied. cAMP reduced accumulation of ROS induced by serum-limitation, under conditions in which there was no significant change in the activity of scavenger systems. This effect was associated with cAMP-dependent activation of the NADH-ubiquinone oxidoreductase activity of complex I. In fibroblasts from a patient a genetic defect in the 75 kDa FeS-protein subunit of complex I resulted in inhibition of the activity of the complex and enhanced ROS production, which were reversed by cAMP. A missense genetic defect in the NDUFS4 subunit, putative substrate of PKA, suppressed, on the other hand, the activity of the complex and prevented ROS production.  相似文献   

6.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   

7.
Complex I defects are one of the most frequent causes of mitochondrial respiratory chain disorders. Therefore, it is important to find new approaches for detecting and characterizing Complex I deficiencies. In this paper, we introduce a new set of monoclonal antibodies that react with 39-, 30-, 20-, 18-, 15-, and 8-kDa subunits of Complex I. These antibodies are shown to aid in diagnosis of Complex I deficiencies and add understanding to the genotype-phenotype relationships of different mutations. A total of 11 different patients were examined. Four patients had undefined Complex I defects, whereas the other patients had defects in NDUFV1, NDUFS2 (two patients), NDUFS4 (two patients), NDUFS7, and NDUFS8. We show here that Western blotting with these antibodies, particularly when used in conjunction with sucrose gradient studies and enzymatic activity measurements, helps distinguish catalytic versus assembly defects and further distinguishes between mutations in different subunits. Furthermore, different mutations in the same gene are shown to give very similar subunit profiles, and we show that one of the patients is a good candidate for having a defect in a Complex I assembly factor.  相似文献   

8.
Despite the fact that mitochondrial dysfunction has an important role in tumorigenesis and metastasis, the underlying mechanism remains to be elucidated. Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) is the first and the largest protein complex of the mitochondrial electron-transport chain (ETC),which has an essential role in maintaining mitochondrial function and integrity. In this study, we separately knocked down two subunits of mitochondrial complex I, GRIM-19 or NDUFS3, and investigated their effects on metastatic behaviors and explored the possible mechanisms. Our data showed that stable down-modulation of GRIM-19 or NDUFS3 decreased complex I activity and reactive oxygen species (ROS) production; led to enhanced cell adhesion, migration, invasion, and spheroid formation; and influenced the expressions of extracellular matrix (ECM) molecules and its related proteins. We also observed that the expressions of GRIM-19, NDUFS3, and ECM elements were correlated with invasive capabilities of breast cancer cell lines. These results suggest that inhibition of complex I affects metastatic properties of cancer cells, and mitochondrial ROS might play a crucial role in these processes by regulating ECM.  相似文献   

9.
Malfunction of NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest complex of the mitochondrial oxidative phosphorylation system, has been implicated in a wide variety of human disorders. To demonstrate a quantitative relationship between CI amount and activity and mitochondrial shape and cellular reactive oxygen species (ROS) levels, we recently combined native electrophoresis and confocal and video microscopy of dermal fibroblasts of healthy control subjects and children with isolated CI deficiency. Individual mitochondria appeared fragmented and/or less branched in patient fibroblasts with a severely reduced CI amount and activity (class I), whereas patient cells in which these latter parameters were only moderately reduced displayed a normal mitochondrial morphology (class II). Moreover, cellular ROS levels were significantly more increased in class I compared with class II cells. We propose a mechanism in which a mutation-induced decrease in the cellular amount and activity of CI leads to enhanced ROS levels, which, in turn, induce mitochondrial fragmentation when not appropriately counterbalanced by the cell's antioxidant defense systems.  相似文献   

10.
Mitochondrial outer membrane permeabilization and cytochrome c release promote caspase activation and execution of apoptosis through cleavage of specific caspase substrates in the cell. Among the first targets of activated caspases are the permeabilized mitochondria themselves, leading to disruption of electron transport, loss of mitochondrial transmembrane potential (DeltaPsim), decline in ATP levels, production of reactive oxygen species (ROS), and loss of mitochondrial structural integrity. Here, we identify NDUFS1, the 75 kDa subunit of respiratory complex I, as a critical caspase substrate in the mitochondria. Cells expressing a noncleavable mutant of p75 sustain DeltaPsim and ATP levels during apoptosis, and ROS production in response to apoptotic stimuli is dampened. While cytochrome c release and DNA fragmentation are unaffected by the noncleavable p75 mutant, mitochondrial morphology of dying cells is maintained, and loss of plasma membrane integrity is delayed. Therefore, caspase cleavage of NDUFS1 is required for several mitochondrial changes associated with apoptosis.  相似文献   

11.
This paper summarizes observations on the genetic and biochemical basis of hereditary defects of complex I (NADH-ubiquinone oxidoreductase) of the respiratory chain in human neurological patients. Two different types of functional defects of the complex are described. In one type mutations in the NDUFS1 and NDUFS4 nuclear structural genes of the complex were identified in two unrelated families. Both NDUFS1 and NDUFS4 neurological disorders were transmitted by autosomic recessive inheritance. The two mutations resulted in different impact on cellular metabolism. The NDUFS4 mutation, giving a more severe, fatal pathological pattern, resulted in a defective assembly of the complex and complete suppression of the enzymatic activity. The NDUFS1 mutation, with less severe progressive pathology, caused only partial inhibition of the complex but enhanced production of oxygen free radicals. In the second type of deficiencies extensive mutational analysis did not reveal pathogenic mutations in complex I genes but a decline in the level and activity of complex I, III, and IV were found, apparently associated with alteration in the cardiolipin membrane distribution.  相似文献   

12.
13.
NNMT (nicotinamide N-methyltransferase, E.C. 2.1.1.1) catalyses the N-methylation of nicotinamide to 1-methylnicotinamide. NNMT expression is significantly elevated in a number of cancers, and we have previously demonstrated that NNMT expression is significantly increased in the brains of patients who have died of Parkinson's disease. To investigate the cellular effects of NNMT overexpression, we overexpressed NNMT in the SH-SY5Y cell line, a tumour-derived human dopaminergic neuroblastoma cell line with no endogenous expression of NNMT. NNMT expression significantly decreased SH-SY5Y cell death, which correlated with increased intracellular ATP content, ATP/ADP ratio and Complex I activity, and a reduction in the degradation of the NDUFS3 [NADH dehydrogenase (ubiquinone) iron-sulfur protein 3] subunit of Complex I. These effects were replicated by incubation of SH-SY5Y cells with 1-methylnicotinamide, suggesting that 1-methylnicotinamide mediates the cellular effects of NNMT. Both NNMT expression and 1-methylnicotinamide protected SH-SY5Y cells from the toxicity of the Complex I inhibitors MPP+ (1-methyl-4-phenylpyridinium ion) and rotenone by reversing their effects upon ATP synthesis, the ATP/ADP ratio, Complex I activity and the NDUFS3 subunit. The results of the present study raise the possibility that the increase in NNMT expression that we observed in vivo may be a stress response of the cell to the underlying pathogenic process. Furthermore, the results of the present study also raise the possibility of using inhibitors of NNMT for the treatment of cancer.  相似文献   

14.
A study is presented on cyclic adenosine monophosphate- (cAMP-) dependent phosphorylation of mammalian mitochondrial proteins. Immunodetection with specific antibodies reveals the presence of the catalytic and the regulatory subunits of cAMP-dependent protein kinase (PKA) in the inner membrane and matrix of bovine heart mitochondria. The mitochondrial cAMP-dependent protein kinase phosphorylates mitochondrial proteins of 29, 18, and 6.5 kDa. With added histone as substrate, PKA exhibits affinities for ATP and cAMP and pH optimum comparable to those of the cytosolic PKA. Among the mitochondrial proteins phosphorylated by PKA, one is the nuclear-encoded (NDUFS4 gene) 18 kDa subunit of complex I, which has phosphorylation consensus sites in the C terminus and in the presequence. cAMP promotes phosphorylation of the 18 kDa subunit of complex I in myoblasts in culture and in their isolated mitoplast fraction. In both cases cAMP-dependent phosphorylation of the 18 kDa subunit of complex I is accompanied by enhancement of the activity of the complex. These results, and the finding of mutations in the NDUFS4 gene in patients with complex I deficiency, provide evidence showing that cAMP-dependent phosphorylation of the 18 kDa subunit of complex I plays a major role in the control of the mitochondrial respiratory activity.  相似文献   

15.
Shim JH  Yoon SH  Kim KH  Han JY  Ha JY  Hyun DH  Paek SH  Kang UJ  Zhuang X  Son JH 《Mitochondrion》2011,11(5):707-715
The nature of mitochondrial dysfunction in dopaminergic neurons in familial Parkinson's disease (PD) is unknown. We characterized the pathophenotypes of dopaminergic neuronal cells that were deficient in PINK1 or DJ-1, genes with mutations linked to familial PD. Both PINK1- and DJ-1-deficient dopaminergic neurons had the increased production of ROS, severe mitochondrial structural damages and complex I deficits. A striking decrease in complex IV activity was also prominent by the PINK1-deficiency. The complex I deficits were relatively PD-specific and were significantly improved by an antioxidant Trolox. These data suggest that mitochondrial deficits are severe in dopaminergic neurons in familial PD and antioxidant-mediated functional recovery is feasible.  相似文献   

16.
Oxidative stress occurs in brains of Alzheimer's disease (AD) patients. A major question in AD research is whether the oxidative stress is just secondary to neurodegeneration. To test whether oxidative stress is an inherent property of AD tissues, the ability of cultured fibroblasts bearing the AD Presenilin-1 246 Ala-->Glu mutation to handle reactive oxygen species (ROS) was compared to controls. Although ROS in cells from AD subjects were only slightly less than cells from controls under basal conditions (-10%) or after exposure to H(2)O(2) (-16%), treatment with antioxidants revealed clear differences. Pretreatment with DMSO, a hydroxyl radical scavenger, reduced basal and H(2)O(2)-induced ROS levels significantly more in cells from controls (-22%, -22%) than in those from AD subjects (-4%, +14%). On the other hand, pretreatment with Trolox diminished H(2)O(2)-induced ROS significantly more in cells from AD (-60%) than control subjects (-39%). In summary, cells from AD patients have greater Trolox sensitive ROS and less DMSO sensitive ROS than controls. The results demonstrate that fibroblasts bearing this PS-1 mutation have altered means of handling oxidative stress and appear useful for determining the mechanism underlying the altered redox metabolism.  相似文献   

17.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

18.
The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (DeltaPsi(m)) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB.  相似文献   

19.
A cAMP-dependent protein kinase (PKA) is localized in mammalian mitochondria with the catalytic site at the matrix side of the membrane where it phosphorylates a number of proteins. One of these is the 18 kDa(IP) subunit of the mammalian complex I of the respiratory chain, encoded by the nuclear NDUFS4 gene. Mitochondria have a Ca2+-inhibited phosphatase, which dephosphorylates the 18 kDa phosphoprotein of complex I. In fibroblast and myoblast cultures cAMP-dependent phosphorylation of the 18 kDa protein is associated with stimulation of complex I and overall respiratory activity with NAD-linked substrates. Mutations in the human NDUFS4 gene have been found, which in the homozygous state are associated with deficiency of complex I and fatal neurological syndrome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号