首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification and properties of arylsulphatase A from chicken brain   总被引:4,自引:4,他引:0       下载免费PDF全文
1. Chicken brain arylsulphatase A was purified 2000-fold, with overall recovery 14%, by using ammonium sulphate fractionation, ethanol precipitation, Sephadex G-200 gel filtration and DEAE-Sephadex column chromatography. 2. The purified preparation was free from beta-glucuronidase, beta-galactosidase, acid phosphatase, inorganic pyrophosphatase and adenosine 3'-phosphate 5'-sulphatophosphate sulphohydrolase activities. 3. Polyacrylamide-gel electrophoresis indicated that the purified preparation was not homogeneous. 4. Chicken brain arylsulphatase was markedly inhibited by carbonyl reagents in the presence of traces of Cu(2+) in the system. Other metal ions such as Fe(2+) and Zn(2+), were inactive. 5. Ascorbic acid alone had no effect on enzyme activity but enhances the inhibition by Cu(2+). 6. Chicken brain arylsulphatase A resembled arylsulphatase A of other animal species in its kinetic properties such as K(m) value, anomalous time-activity relationship and the inhibitory effect of phosphate, sulphite and sulphate ions. However, its electrophoretic mobility, behaviour under zinc acetate fractionation and stimulation by Ag(+) were similar to arylsulphatase B of other animal species. Thus, this enzyme did not correspond to either arylsulphatase A or arylsulphatase B but properties of both. 7. The purified enzyme preparation can degrade cerebroside 3-sulphate.  相似文献   

2.
Rabbit testis arylsulphatase A was purified 140-fold with a recovery of 20% from detergent extracts of an acetone-dried powder by using DE-52 cellulose column chromatography, gel filtration on Sephadex G-200 and preparative isoelectric focusing. The purified enzyme showed one major band with one minor contaminant on electrophoresis in a 7.5% (w/v) polyacrylamide gel at pH8.3. On sodiumdodecyl sulphate/polyacrylamidegel electrophoresis, a single major band was observed with minor contaminants. The final preparation of enzyme was free from general proteolytic, esterase, hyaluronidase, beta-glucuronidase and beta-galactosidase activities. Rabbit testicular arylsulphatase A exists as a dimer of mol.wt. 110000 at pH7.1. At pH5.0 the enzyme is a tetramer of mol.wt. 220000. Arylsulphatase A appears to consist of two identical subunits of mol.wt. 55000 each. The highly purified enzyme has pI4.6. The enzyme hydrolyses p-nitrocatechol sulphate with Km and Vmax, of 4.1 mM and 80nmol/min respectively, but has no activity toward p-nitrophenyl sulphate. The pH optimum of the enzyme varies with the incubation time. By applying Sephacex G-200 chromatography and preparative isoelectric focusing, one form of enzyme was obtained. The enzyme has properites common to arylsulphatase A of other sources with respect to the anomalous time-activity relationship, pI, inhibition by PO42-, SO32- and Ag+ ions and substrate affinity to p-nitrocatechol sulphate. However, the enzyme shows the temperature optimum of arylsulphatase B of other species.  相似文献   

3.
After solubilization with 0.5% (w/v) lysolecithin an arylsulphatase was purified 30-fold from human brain. By this procedure, 82% of the activity was recovered in the 100,000 g supernatant fluid. Solubilization of the enyzme was dependent on lysolecithin concentration but not on the time of incubation. The enzyme was purified using ethanol and ammonium sulphate fractionations. The purified protein showed a single band on acrylamide gel electrophoresis in two different buffer systems. On ultracentrifugation, a sharp symmetrical peak was obtained with a s20,w value of 5.4 and an apparent molecular weight of 103,000 daltons was calculated. A molecular weight of 105,000 daltons was obtained by sucrose density gradient. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed the presence of two subunit species with molecular weights of 47,000 and 25,000 daltons. The enzyme was unstable at 04°C but could be stored in a frozen state without much loss of activity. 4-Methylumbelliferone-sulphate was used as substrate in these studies and the product, methylumbelliferone, was quantified fluorometrically. The enzyme had an optimum pH of 6.8. A higher activity was exhibited in imidazole buffer than in acetate buffer. Enzyme activity was linear up to 30 min of incubation. The enzyme showed a Km of 37.7 μm for 4-methylumbelliferone-sulphate. Ammonium sulphate at 5 mm produced a slight activation of the enzyme. Borate, silver and sulphite ions inhibited enzyme activity, whereas p-chloromercuribenzoate, and cyanide, arsenite, fluoride and phosphate ions caused very little inhibition. The chemical enzymatic hydrolysis of the native enzyme revealed the presence of 2 mol of sialic acid per mole of the enzyme. Enzymatic removal of sialic acid did not affect the activity of the enzyme; therefore, the sialic acid moiety was not required for enzyme activity.  相似文献   

4.
In the present study we have purified the intracellular veratryl alcohol oxidase (VAO) enzyme from Pseudomonas aeruginosa strain BCH to evaluate its dye decolorizing potential. The enzyme was purified by ion exchange chromatography using DEAE cellulose followed by gel filtration chromatography using Biogel P-100. The molecular weight of the purified enzyme was estimated by polyacrylamide gel electrophoresis (PAGE) analysis. The VAO was purified up to 12 and 16.3-fold by ion exchange and gel filtration chromatography respectively. VAO was estimated to be about 85 kDa by SDS–PAGE. The optimum pH and temperature for purified VAO was 3 and 55°C respectively. The purified enzyme exerted its optimal activity with veratryl alcohol and also oxidized various other substrates, whereas diminished activity was noted in case of tryptophan and xylidine. The metal ions Mn++ and Hg++ were found to suppress the oxidase activity. The purified enzyme decolorized different dyes with variable decolorization rates and efficiencies. Decolorization mechanism of Remazol Black by purified enzyme was studies in detail using various analytical techniques like HPLC, GC–MS and FTIR. This study is useful for understanding the precise role of Pseudomonas aeruginosa strain BCH in the decolorization of textile dyes containing industrial wastewater.  相似文献   

5.
A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.  相似文献   

6.
The pig endometrial arylsulphatase A was purified 3322-fold to a specific activity of 150 mumol/min per mg. The purification involved (NH4)2SO4 fractionation, chromatography on concanavalin A-Sepharose and DEAE-Sepharose, gel filtrations on Sephadex G-200 at pH 7.4 and 5, and a new preparative gel-electrophoresis technique. The homogeneous enzyme is a glycoprotein containing 20% carbohydrate. The purified enzyme has Mr about 120 000 and it contains subunits of Mr 63 000. The pig endometrial arylsulphatase A shows many properties in common with those of arylsulphatases A purified from other sources. The similarities include their low isoelectric points, the anomalous time-activity relationships, multi-pH optima, inhibition by SO3(2-), SO4(2-), phosphate ions, metal ions and nucleoside phosphates, pH- and ionic-strength-dependent polymerization and amino acid composition.  相似文献   

7.
The enzyme γ-glutamyl transpeptidase was purified from seeds of immature ackee fruit (Blighia sapida; Sapindaceae) by salt fractionation and gel filtration on Biogel P-10 and P-200. The procedure, which differs from an earlier one applied to kidney bean fruit, achieves 9.8% yield and 577-fold purification. The enzyme is also present in other parts of the fruit and in leaves. A MW of 12 500 was found by SDS-polyacrylamide gel electrophoresis, a value much lower that that reported for the enzyme from kidney bean fruit. Neutral or amino sugar accounts for 10% of the dry weight. In vitro, the enzyme catalysed synthesis of an unusual γ-glutamyl dipeptide which occurs in ackee seeds, using glutathione as glutamyl group donor. The enzyme mechanism was of the double displacement (ping-pong) type.  相似文献   

8.
Galactose oxidase was purified from the culture supernatant of Gibberella fujikuroi by ammonium sulfate precipitation, chromatographies on DEAE-cellulose and hydroxylapatite, and gel filtration on Bio-Gel P-100. The purified enzyme had a molecular weight of 90,000 and an isoelectric point of pH 3.7, and contained about one atom of copper and about one atom of iron per mol of the enzyme protein. The enzyme was markedly inactivated by a copper-chelating agent, diethyldithiocarbamate, and reducing agents. The apoenzyme preparing on treatment of the enzyme with diethyldithiocarbamate could be reactivated only by the addition of either Cu+ or Cu2 +. These results indicate that copper is involved in galactose oxidase activity of G. fujikuroi.  相似文献   

9.
An alkaline phosphatase was purified from boar seminal plasma using adsorption to calcium phosphate gel, gel filtration, and ion-exchange chromatography. The preparation gave a single band on SDS polyacrylamide electrophoresis. The enzyme was a non-specific alkaline phosphatase that hydrolysed pyrophosphate slowly and had no phosphodiesterase activity. The pH optimum was 10 and the Km was approximately 0.2 mM with p-nitrophenyl phosphate as substrate. The enzyme was a zinc metalloenzyme as indicated by the loss of activity when treated with o-phenanthroline and the restoration of activity by zinc and magnesium ions. It also lost activity when treated with thiols. Molecular weight estimates from SDS polyacrylamide gel electrophoresis and gel filtration suggest that the enzyme is a tetramer of identical subunits, each of which has a molecular weight of 68,000.  相似文献   

10.
1. An alkaline phosphatase was partially purified from extracts of Halobacterium cutirubrum. 2. The enzyme has a mol.wt. of 15 500 and is therefore less than one-quarter of the size of other known bacterial alkaline phosphatases. 3. It is stimulated up to ten-fold by Mn2+, but not by Ca2+ or Mg2+. 4. The activities with and without Mn2+ cannot be separated by gel filtration and have similar restricted substrate specificities. 5. The only substrates for the enzyme that have so far been found are p-nitrophenyl phosphate, 5'-dATP, 5'-dTMP and 5'-dTTP.  相似文献   

11.
Arylsulphatase C (EC 3.1.6.1) has been purified 300-fold from human placental microsomes using a four step procedure involving solubilization with Triton X-100, chromatography on hydroxyapatite, column chromatofocussing and ion-exchange chromatography on DEAE-Sepharose. The purified enzyme is electrophoretically homogeneous and has a molecular weight of 440 000 as determined by polyacrylamide gradient gel electrophoresis. On analysis of the preparation by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate a polypeptide of molecular weight 74 000 was observed, suggesting that the enzyme as purified may be a hexamer. The behaviour of the enzyme during chromatofocussing indicates the enzyme has a pI of 6.56. Steroid sulphatase, as measured by activity towards dehydroepiandrosterone sulphate, co-purifies with arylsulphatase C suggesting that both activities are due to a single enzyme.  相似文献   

12.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

13.
—For the first time, microorganisms producing cyclomaltodextrin glucantransferaseglucan transferases (CGT, EC 2.4.1.19) were isolated from soil samples of various ecogeographical regions. These microorganisms were identified asBacillus macerans. The enzymes were purified by affinity chromatography on an α-cyclodextrin polymer and gel filtration on Biogel P-150 and proved to be electrophoretically homogeneous. Some of their physicochemical and biochemical properties are reported.  相似文献   

14.
Abstract

An extracellular alkaline phosphatase from Penidllium chrysogenum was purified to homogeneity using DEAE ion-exchange chromatography and size exclusion chromatography. SDS-PAGE of the purified enzyme indicated a molecular weight of 58,000. The mobility of the native enzyme on a Superose 12 column suggests that the active form of the enzyme is a monomer. The enzyme catalyzes the hydrolysis of phosphate from a variety of substrates including p-Miitrophenyl phosphate, α-naphthyl phosphate and the anti-tumor compound etoposide phosphate. The apparent Km for the substrate p-nitrophenyl phosphate is 1.3 mM and the enzyme is inhibited by inorganic phosphate. The pH optimum of the enzyme is 9.0 with a broad optimal temperature range between 40 and 50 °C. The isoelectric point of the enzyme is approximately 5.5. The enzyme is a glycoprotein; digestion with endoglycosidase H indicates that the protein consists primarily of N-inked carbohydrates. Enzymatic activity is enhanced by the addition of divalent cations such as Mg++ and Mn++ and inhibited by addition of a chelator such as EDTA suggesting a metal ion requirement. The enzyme was found to be an inexpensive catalyst for the conversion of etoposide phosphate to etoposide in the manufacture of this anti-tumor compound.  相似文献   

15.
Candida utilis alkaline phosphatase has been detected in vacuoles. Liberation of the vacuoles was carried out by protoplast disruption under isotonic conditions. The polybase DEAE-dextran was used to induce damage to the yeast plasmalemma. The vacuoles were purified by centrifugation on sorbitol-Ficoll gradients. Alkaline phosphatase from a purified fraction of vacuoles was characterized after gel filtration on Sephadex G-200. We have found 15 mU of enzyme activity per 108 vacuoles. This enzyme activity elutes on Sephadex G-200 at a volume-to-void-volume ratio of 1.65. The approximate molecular weight is 1.35×105. TheK m value forp-nitrophenyl-phosphate is 2.5×10–3 M. The pH for maximum activity is 8.9, and the enzyme is stable at pH values between 7.0 and 9.0. Rapid inactivation occurs at temperatures above 45°C. The enzyme catalyzes the hydrolysis of phosphomonoester bonds of a wide variety of molecules, especially polyphosphates. Thus, vacuolar polyphosphates are probably the natural substrate of this enzyme. Orthophosphate, arsenate, ethylenediaminetetraacetate, molybdate, and borate act as inhibitors. Fluoride is not an inhibitor, and the activity is not affected byp-hydroxymercuribenzoate. Some metal ions also affect the activity of vacuolar alkaline phosphatase. This may indicate that this enzyme is a metalloprotein.  相似文献   

16.
Alkaline phosphatase catalyzes the hydrolysis of phosphomonoesters and is widely used in molecular biology techniques and clinical diagnostics. We expressed a recombinant alkaline phosphatase of the marine bacterium, Cobetia marina, in Escherichia coli BL21 (DE3). The recombinant protein was purified with a specific activity of 12,700 U/mg protein, which is the highest activity reported of any bacterial alkaline phosphatase studied to date. The molecular mass of the recombinant protein was 55–60 kDa, as determined by SDS–PAGE, and was observed to be a dimer by gel filtration analysis. The enzyme was optimally active at 45°C and the recombinant alkaline phosphatase efficiently hydrolyzed a phosphoric acid ester in luminescent and fluorescent substrates. Therefore, this enzyme can be considered to be extremely useful as a label conjugated to an antibody.  相似文献   

17.
Cellulases are important in the hydrolysis of lignocellulosic materials and thereby contribute to biomass conversion into fuels and chemicals. A cellulase-producing bacterium was isolated from decayed plant leaf litter in soil of a botanical garden. Based on morphological, biochemical and 16S rRNA gene sequencing, it was identified as Enterobacter cloacae IP8, with gene bank accession number NR118568.1. The bacterial cellulase was purified in a three-step procedure using lyophilization, ion exchange chromatography (QAE Sephadex A-50) and gel filtration (Biogel P-100). Two isoforms of the enzyme were purified 1.21 and 1.23 folds, respectively, with yields of 30 and 29% for isoforms A and B, respectively. Apparent molecular weights of 36.61?±?1.40 and 14.1?±?0.10?kDa were obtained for isoforms A and B, respectively, using gel filtration chromatography. Kinetic parameters Km and Vmax were 0.13?±?0.04?mg/ml and 3.84?±?0.05?U/ml/min, respectively, for isoform A and 0.58?±?0.06?mg/ml and 13.8?±?0.10?U/ml/min, respectively, for isoform B. Optimum pH (7.0) and temperature (60?°C) of cellulase activity were determined for both isoforms A and B. Na+ and Ca2+ enhanced the activities of both isoforms. Mg2+ inhibited the enzyme activity at concentrations 4–15?mM but, while it stimulated the activity of isoform A at concentrations 15–200?mM, it inhibited that of isoform B at same concentration range. The strong inhibition of the enzyme by ethylenediaminetetraacetic acid (EDTA) confirmed the enzyme as a metalloenzyme. These results reveal the purified cellulase from E. cloacae IP8 as a thermostable, acidic to neutral metalloenzyme, suggesting that it has good potential for biotechnological applications.  相似文献   

18.
The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg2+-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.  相似文献   

19.
Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery   总被引:1,自引:0,他引:1  
Xylanase of low molecular weight (K II) was isolated from the fungus Aspergillus niger IBT-90 cultivated in medium with wheat bran. K II was purified by precipitation with ammonium sulphate (20–80% saturation) and gel filtration on Biogel P-10. This enzyme is most active in hydrolysis of birchwood xylan at 50°C and pH 5.5. Xylanase K II has an ability to degrade 1,4-β-bonds and to debranch substrates. It degrades not only xylans but also cellulose, an important factor for its application in bakery. Ag+, Fe3+ and NBS are strong inhibitors of the enzyme. DTT and Na+ activate xylanase K II by 24 and 13%, respectively. Enzyme K II used as additive to flour improves dough properties, increases the volume of wheat–rye and whole meal bread, and increases the porosity of crumb and the moisture of the final product, consequently extending the shelf life of bread.  相似文献   

20.
L-DOPA was identified in hydrolysates of Mytilus byssal adhesive discs and is present at about 10 res1000. The compound was isolated and purified by ion exchange on cellulose phosphate and Biogel P-2 gel filtration. Identity with standard DOPA was demonstrated using thin-layer chromatography, the effect of pH on UV absorbance, fluorescence spectrophotometry, amino acid analysis, and the preparation of ethylenediamine derivatives. Contrary to earlier reports, dityrosine was not detected. A sodium dodecylsulfate-insoluble protein containing 48 res1000 of DOPA was isolated from the gland that secretes the disc adhesive. This protein is presumed to be a precursor of the adhesive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号