首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmospheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3 concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to utilize the large HCO3 pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO2 and low-pH ocean.  相似文献   

2.
Carbon acquisition by diatoms   总被引:2,自引:0,他引:2  
Diatoms are responsible for up to 40% of primary productivity in the ocean, and complete genome sequences are available for two species. However, there are very significant gaps in our understanding of how diatoms take up and assimilate inorganic C. Diatom plastids originate from secondary endosymbiosis with a red alga and their Form ID Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase) from horizontal gene transfer, which means that embryophyte paradigms can only give general guidance as to their C acquisition mechanisms. Although diatom Rubiscos have relatively high CO2 affinity and CO2/O2 selectivity, the low diffusion coefficient for CO2 in water has the potential to restrict the rate of photosynthesis. Diatoms growing in their natural aquatic habitats operate inorganic C concentrating mechanisms (CCMs), which provide a steady-state CO2 concentration around Rubisco higher than that in the medium. How these CCMs work is still a matter of debate. However, it is known that both CO2 and HCO3 are taken up, and an obvious but as yet unproven possibility is that active transport of these species across the plasmalemma and/or the four-membrane plastid envelope is the basis of the CCM. In one marine diatom there is evidence of C4-like biochemistry which could act as, or be part of, a CCM. Alternative mechanisms which have not been eliminated include the production of CO2 from HCO3 at low pH maintained by a H+ pump, in a compartment close to that containing Rubisco.  相似文献   

3.
Inorganic carbon acquisition by eukaryotic algae: four current questions   总被引:1,自引:0,他引:1  
The phylogenetically and morphologically diverse eukaryotic algae are typically oxygenic photolithotrophs. They have a diversity of incompletely understood mechanisms of inorganic carbon acquisition: this article reviews four areas where investigations continue. The first topic is diffusive CO2 entry. Most eukaryotic algae, like all cyanobacteria, have inorganic carbon concentrating mechanisms (CCMs). The ancestral condition was presumably the absence of a CCM, i.e. diffusive CO2 entry, as found in a small minority of eukaryotic algae today; however, it is likely that, as is found in several cases, this condition is due to a loss of a CCM. There are a number of algae which are in various respects intermediate between diffusive CO2 entry and occurrence of a CCM: further study is needed on this aspect. A second topic is the nature of cyanelles and their role in inorganic carbon assimilation. The cyanelles (plastids) of the euglyphid amoeba Paulinella have been acquired relatively recently by endosymbiosis with genetic integration of an α-cyanobacterium with a Form 1A Rubisco. The α-carboxysomes in the cyanelles are presumably involved in a CCM, but further investigation is needed.Also called cyanelles are the plastids of glaucocystophycean algae, but is it now clear that these were derived from the β-cyanobacterial ancestor of all plastids other than that of Paulinella. The resemblances of the central body of the cyanelles of glaucocystophycean algae to carboxysomes may not reflect derivation from cyanobacterial β-carboxysomes; although it is clear that these algae have CCMs but these are now well characterized. The other two topics concern CCMs in other eukaryotic algae; these CCMs arose polyphyletically and independently of the cyanobacterial CCMs. It is generally believed that eukaryotic algal, like cyanobacterial, CCMs are based on active transport of an inorganic carbon species and/or protons, and they have C3 biochemistry. This is the case for the organism considered as the third topic, i.e. Chlamydomonas reinhardtii, the eukaryotic alga with the best understood CCM. This CCM involves HCO3 ? conversion to CO2 in the thylakoid lumen so the external inorganic carbon must cross four membranes in series with a final CO2 effux from the thylakoid. More remains to be investigated about this CCM. The final topic is that of the occurrence of C4-like metabolism in the CCMs of marine diatoms. Different conclusions have been reached depending on the organism investigated and the techniques used, and several aspects require further study.  相似文献   

4.
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose‐bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non‐calcifying strains showed strong CCM activity, with HCO3? as a preferred source of photosynthetic carbon in the non‐calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco‐lithophorids will be able to down‐regulate their CCMs, and re‐direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non‐calcifying strain, on the other hand, will experience only a 10% increase in HCO3?, thus making it less responsive to changes in carbonate chemistry of water.  相似文献   

5.
The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration (K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.  相似文献   

6.
Most organisms inhabiting earth feed directly or indirectly on the products synthesized by the reaction of photosynthesis, which at the current atmospheric CO2 levels operates only at two thirds of its peak efficiency. Restricting the photorespiratory loss of carbon and thereby improving the efficiency of photosynthesis is seen by many as a good option to enhance productivity of food crops. Research during last half a century has shown that several plant species developed CO2-concentrating mechanism (CCM) to restrict photorespiration under lower concentration of available CO2. CCMs are now known to be operative in several terrestrial and aquatic plants, ranging from most advanced higher plants to algae, cyanobacteria and diatoms. Plants with C4 pathway of photosynthesis (where four-carbon compound is the first product of photosynthesis) or crassulacean acid metabolism (CAM) may consistently operate CCM. Some plants however can undergo a shift in photosynthetic metabolism only with change in environmental variables. More recently, a shift in plant photosynthetic metabolism is reported at high altitude where improved efficiency of CO2 uptake is related to the recapture of photorespiratory loss of carbon. Of the divergent CO2 assimilation strategies operative in different oraganisms, the capacity to recapture photorespiratory CO2 could be an important approach to develop plants with efficient photosynthetic capacity.  相似文献   

7.
Growth rates, photosynthetic responses and the activity, amount and CO2 affinity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) were determined for common marine macroalgae grown in seawater (containing 14.5 ± 2.1 µM CO2) or CO2‐enriched seawater (averaging 52.8 ± 19.2 µM CO2). The algae were grown in 40 L fiberglass tanks (outdoor) for 4–15 weeks and in a field experimental setup for 5 days. Growth rates of the species studied (representing the three major divisions, i.e. Chlorophyta, Rhodophyta and Phaeophyta) were generally not significantly affected by the increased CO2 concentrations in the seawater medium. Rubisco characteristics of algae cultivated in CO2‐enriched seawater were similar to those of algae grown in nonenriched seawater. The lack of response of photosynthetic traits in these aquatic plants is likely to be because of the presence of CO2 concentrating mechanisms (CCMs) which rely on HCO3 utilization, the inorganic carbon (Ci) form that dominates the total Ci pool available in seawater. Significant changes on the productivity of these particular marine algae species would not be anticipated when facing future increasing atmospheric CO2 levels.  相似文献   

8.
《Trends in plant science》2023,28(7):795-807
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth’s ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms – called CO2-concentrating mechanisms (CCMs) – for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.  相似文献   

9.
Summary Ten species of brown macroalgae (five eulittoral and one submersed species of the Fucales; four submersed species of the Laminariales) from a rocky shore at Arbroath, Scotland, were examined for characteristics of emersed photosynthesis in relation to the partial pressure of CO2 and O2. The five eulittoral species of the Fucaceae were approaching CO2 saturation for light-saturated photosynthesis at normal air levels of CO2 (35 Pa) in 21 kPa O2. The normally submersed algae are further from CO2 saturation under these conditions, especially in the case of the four members of the Laminariales. The rate of net photosynthesis in the Fucaceae is O2-independent in the range 2–21 kPa O2 over the entire range of CO2 partial pressure tested (compensation up to 95 Pa). For the other five algae tested, net photosynthesis is slightly inhibited by O2 at 21 kPa relative to 2 kPa over the entire range of CO2 partial pressures tested (compensation up to 95 Pa). CO2 compensation partial pressures are low (<0.5 Pa) for the Fucaceae and independent of O2 in the range 2–42 kPa. For the other five algae, the CO2 compensation partial pressure are higher, and increased with O2 partial pressure in the range 2–42 kPa. These gas exchange data show that the Fucaceae exhibit more C4-like characteristics of their photosynthetic physiology than do the other five species tested, although even the Laminariales and Halidrys siliquosa are not classic C3 plants in their photosynthetic physiology. These data suggest that, in emersed conditions as well as in the previously reported work on submersed photosynthesis, a CO2 concentrating mechanism is operating which, by energized transmembrane transport of inorganic C, accumulates CO2 at the site of RUBISCO and, at least in part, suppresses the oxygenase activity. Work with added extracellular carbonic anhydrase (CA), and with a relatively membrane-impermeant inhibitor of the native extracellular CA activity (acetazolamide), suggests that, in emersed conditions as well as in the previously reported work on algae submersed in seawater at pH 8, HCO inf3 sup– is the major inorganic C species entering the cell. At optimal hydration, the rate of emersed photosynthesis in air is not less than the rate of photosynthesis when submersed in seawater, at least for the Fucaceae. 13C ratios of organic C for the Fucaceae are slightly more negative than is the case for the other five algae; these data are consitent with substantial (half or more of the entering inorganic C) leakage of CO2 from the accumulated pool, and with some contribution of atmospheric CO2 to the organic C gain by the eulittoral algae. The predicted increase in N use efficiency of photosynthesis in the Fucaceae, with their more strongly developed CO2 concentrating mechanism, is consistent with data on emersed, but not submersed, photosynthesis for the algae collected from the wild and thus at a poorly defined N status. The more C4-like gas exchange charateristics of photosynthesis in the eulittoral Fucaceae may be important in increasing the water use efficiency of emersed photosynthesis from the limited capital of water available for transpiration by a haptophyte.  相似文献   

10.
Cyanobacteria, algae, aquatic angiosperms and higher plants have all developed their own unique versions of photosynthetic CO2 concentrating mechanisms (CCMs) to aid Rubisco in efficient CO2 capture. An important aspect of all CCMs is the critical roles that the specialised location and function that various carbonic anhydrase enzymes play in the overall process, participating the interconversion of CO2 and HCO3 species both inside and outside the cell. This review examines what we currently understand about the nature of the carbonic anhydrase enzymes, their localisation and roles in the various CCMs that have been studied in detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Ecophysiology of algae living in highly acidic environments   总被引:4,自引:0,他引:4  
Gross  Wolfgang 《Hydrobiologia》2000,433(1-3):31-37
Highly acidic environments are inhabited by acidophilic as well as acidotolerant algae. Acidophilic algae are adapted to pH values as low as 0.05 and unable to grow at neutral pH. A prerequisite for thriving at low pH is the reduction of proton influx and an increase in proton pump efficiency. In addition, algae have to cope with a limited supply of carbon dioxide for photosynthesis because of the absence of a bicarbonate pool. Therefore, some algae grow mainly in near terrestrial situations to increase the CO2-availability or actively move within the water body into areas with high CO2. Beside these direct effects of acidity, high concentrations of heavy metals and precipitation of nutrients cause indirect effects on the algae in many acidic environments.  相似文献   

12.
Summary

The inorganic C supply to macroalgae in two acid pools in a highland wetheath was analysed using 13C/12C natural abundance measurements. The inorganic C in the pools (pH 3.9 – 4.5) is all present as CO2, and is more than three times the air-equilibrium concentration. The 13C/12C value of the pool CO2 was predicted from the 13C/12C of rainwater CO2 and that of CO 2derived from terrestrial plant (peat) respiration in a quantity adequate to account for the over- saturation of CO2. This 13C/12C value, at least in one pool, is lower than the measured value; this could relate to preferential removal of 12CO2 in submerged photosynthesis and methanogenesis in producing the measured CO2 concentration and 13C/12C in the pool. The algae Batrachospermum keratophytum and Mougeotia capucina appear to be dependent on CO2 diffusion followed by C3 biochemistry; the algal 13C/12C ratio relative to pool CO2 13C/ 12C predicts a fractional limitation of photosynthesis by CO2 diffusion of 0.85 – 0.96. This is much higher than the limitation of photosynthesis by CO2 diffusing in algae in lotic environments with similar CO2 oversaturation values, presumably due to the thicker diffusion boundary layers in the lentic pool environment.  相似文献   

13.
Accumulation of an intracellular pool of carbon (Ci pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2(aq)) in modern seawater. To identify the environmental conditions under which algae accumulate an acid‐labile Ci pool, we applied a 14C pulse‐chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid‐labile Ci pools. Ci pools are measureable in cells cultured in media with 2–30 µmol l?1 CO2(aq), corresponding to a medium pH of 8.6–7.9. The absolute Ci pool was greater for the larger celled diatoms. For both algal classes, the Ci pool became a negligible contributor to photosynthesis once CO2(aq) exceeded 30 µmol l?1. Combining the 14C pulse‐chase method and 14C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2(aq). We showed that the Ci pool decreases with higher CO2:HCO3? uptake rates.  相似文献   

14.
The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 bar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.Abbreviations and symbols A net CO2 assimilation rate - Ca ambient CO2 partial pressure - Ci intercellular CO2 partial pressure - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat catalytic turnover rate per RuBPCase molecule - PFD photon flux density (400 to 700 nm on an area basis) - PGA 3-phosphoglyceric acid - Pi orthophosphate - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

15.
Diatoms and other phytoplankton in coastal waters experience rapid pH changes in milieu due to high biological activities and/or upwelled CO2-rich waters. While CO2 concentrating mechanisms (CCMs) are employed by all diatoms tested to counter low CO2 availability in seawater, little is known how this mechanism responds to fast pH changes. In the present study, the model diatom Thalassiosira pseudonana was acclimated for 20 generations to low pH (7.81) at an elevated CO2 of 1000 μatm (HC) or to high pH (8.18) at ambient CO2 levels of 390 μatm (LC), then its physiological characteristics were investigated as cells were shifted from HC to LC or vice versa. The maximal electron transport rate (ETRmax) in the HC-acclimated cells was immediately reduced by decreased CO2 availability, showing much lower values compared to that of the LC-acclimated cells. However, the cells showed a high capacity to regain their photochemical performance regardless of the growth CO2 levels, with their ETRmax values recovering to initial levels in about 100 min. This result indicates that this diatom might modulate its CCMs quickly to maintain a steady state supply of CO2, which is required for sustaining photosynthesis. In addition, active uptake of CO2 could play a fundamental role during the induction of CCMs under CO2 limitation, since the cells maintained high ETR even when both intracellular and periplasmic carbonic anhydrases were inhibited. It is concluded that efficient regulation of the CCM is one of the key strategies for diatoms to survive in fast changing pH environment, e.g. for the tested species, which is a dominant species in coastal waters where highly fluctuating pH is observed.  相似文献   

16.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

17.
Dinoflagellates represent a cosmopolitan group of phytoplankton with the ability to form harmful algal blooms. Featuring a Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RubisCO) with very low CO2 affinities, photosynthesis of this group may be particularly prone to carbon limitation and thus benefit from rising atmospheric CO2 partial pressure (pCO2) under ocean acidification (OA). Here, we investigated the consequences of OA on two bloom‐forming dinoflagellate species, the calcareous Scrippsiella trochoidea and the toxic Alexandrium tamarense. Using dilute batch incubations, we assessed growth characteristics over a range of pCO2 (i.e. 180–1200 µatm). To understand the underlying physiology, several aspects of inorganic carbon acquisition were investigated by membrane‐inlet mass spectrometry. Our results show that both species kept growth rates constant over the tested pCO2 range, but we observed a number of species‐specific responses. For instance, biomass production and cell size decreased in S. trochoidea, while A. tamarense was not responsive to OA in these measures. In terms of oxygen fluxes, rates of photosynthesis and respiration remained unaltered in S. trochoidea whereas respiration increased in A. tamarense under OA. Both species featured efficient carbon concentrating mechanisms (CCMs) with a CO2‐dependent contribution of HCO3? uptake. In S. trochoidea, the CCM was further facilitated by exceptionally high and CO2‐independent carbonic anhydrase activity. Comparing both species, a general trade‐off between maximum rates of photosynthesis and respective affinities is indicated. In conclusion, our results demonstrate effective CCMs in both species, yet very different strategies to adjust their carbon acquisition. This regulation in CCMs enables both species to maintain growth over a wide range of ecologically relevant pCO2.  相似文献   

18.
Abstract. Photosynthesis by many marine phytoplankton algae is saturated by the inorganic C concentration in air-equilibrated sea water. These organisms appear to use an active inorganic C transport process (CO2-concentrating mechanism) which increases the CO2 concentration around rubisco and saturates this enzyme with CO2 and suppresses its oxygenase activity. A minority of marine phytoplankton algae have photosynthetic characteristics more suggestive of diffusive CO2 entry; the inorganic C concentration present in sea water does not saturate photosynthesis by these organisms. Theoretical considerations, tested when possible against observation, suggest that the organisms with a CO2-concentrating mechanism could have a lower cost of photons, nitrogen, iron, manganese and molybdenum to achieve a given rate of carbon accumulation by the cells than is the case for the organisms with diffusive CO2 entry. Zinc and selenium costs may show the reverse effect. The increased sea-surface inorganic C, and CO2 concentrations which will result from anthropogenic increases in atmospheric CO2 content are predicted to increase the rate of photosynthesis, and of growth when other resources are abundant, and to reduce, or reverse, the higher resource (photons, nitrogen, iron, manganese and molybdenum) cost of a given rate of CO2 assimilation in organisms with CO2 diffusion relative to those which have CO2 concentrating mechanisms and do not repress them at higher inorganic C concentrations. These effects may well alter species composition, and overall resource cost of growth, of phytoplankton; any influence that these effects may have on CO2 removal from the atmosphere are severely constrained by other trophic levels and, especially, oceanic circulation patterns. Changed sea-surface temperatures are unlikely to qualitatively alter these conclusions.  相似文献   

19.
RuBisCO‐catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5‐bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen‐rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2‐specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2/O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co‐evolution of RuBisCO and CCMs. Trade‐offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.  相似文献   

20.
The photosynthetic properties of a range of lichens containing both green algal (11 species) and cyanobacterial (6 species) photobionts were examined with the aim of determining if there was clear evidence for the operation of a CO2-concentrating mechanism (CCM) within the photobionts. Using a CO2-gas-exchange system, which allowed resolution of fast transients, evidence was obtained for the existence of an inorganic carbon pool which accumulated in the light and was released in the dark. The pool was large (500–1000 nmol · mg Chl) in cyanobacterial lichens and about tenfold smaller in green algal lichens. In Hypogymnia physodes (L.) Nyl., which contains the green alga Trebouxia jamesii, a small inorganic carbon pool was rapidly formed in the light. Carbon dioxide was released from this pool into the gas phase upon darkening within about 20 s when photosynthesis was inhibited by the carbon-reduction-cycle inhibitor glycolaldehyde. In the absence of this inhibitor, release appeared to be obscured by carboxylation of ribulose bisphosphate. The kinetics of CO2 uptake and release were monophasic. The operation of an active CCM could be distinguished from passive accumulation and release accompanying the reversible light-dependent alkalization of the stroma by the presence of saturation characteristics with respect to external CO2. In Peltigera canina (L.) Willd., which contains the cyanobacterium Nostoc sp., a larger CO2 pool was taken up over a longer period in the light and the release of this pool in the dark was slow, lasting 3–5 min. This pool also accumulated in the presence of glycolaldehyde, and under these conditions the CO2 release was biphasic. In both species, photosynthesis at low CO2 was inhibited by the carbonic-anhydrase inhibitor ethoxyzolamide (EZ). Inhibition could be reversed fully or to a considerable extent by high CO2. In Peltigera, EZ decreased both the accumulation of the CO2 pool by the CCM and the rate of photosynthesis. Free-living cultures of Nostoc sp. showed a similar effect of EZ on photosynthesis, although it was more dramatic than that seen with the lichen thalli. In contrast, in Hypogymnia, EZ actually increased the size of the CO2 pool, although it inhibited photosynthesis. This effect was also seen when glycolaldehyde was present together with EZ. Surprisingly, EZ did not alter the kinetics of either CO2 uptake or release. Taken together, the evidence indicates the operation in cyanobacterial lichens of a CCM which is capable of considerable elevation of internal CO2 and is similar to that reported for free-living cyanobacteria. The CCM of green algal lichens accumulates much less CO2 and is probably less effective than that which operates in cyanobacterial lichens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号