首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is expected to result in an increase in the frequency and magnitude of extreme weather events. Alhagi sparsifolia is an important factor for wind prevention and sand fixation in the forelands of the Taklamakan Desert. The effects of high temperature on desert plants remain widely unknown. In this work, chlorophyll a fluorescence induction kinetics were investigated at different time stresses of 5, 20, 40, and 60 min at temperature gradients of 38–44 °C at 2 °C intervals. A pronounced K-step was found, and the values of the maximum quantum yield for primary photochemistry, the quantum yield of electron transport, the density of reaction centers and the performance index on absorption basis were lowest after 60 min at 44 °C, thus indicating that the oxygen-evolving complex was damaged, the inactivated reaction centers increased, and the activity of the photosystem II (PSII) reaction center in leaves was seriously limited. Therefore, we suggest that under normal temperature (below 42 °C), the PSII of A. sparsifolia would be unaffected. When such temperature is maintained for 40 min, the activity of PSII would be limited, and when retained for 60 min, PSII may be severely damaged.  相似文献   

2.

Key message

Alhagi sparsifolia Sharp. is commonly considered as a type of sun plant, but shade-grown plants cannot acclimate to the strong irradiance which is normal for plant in a short time when kept in low-light conditions for a while.

Abstract

Alhagi sparsifolia Sharp., commonly considered as a type of sun plant, is the main vegetation found in the forelands of Taklamakan desert; this plant has an important function in wind prevention and sand fixation at the transition zone. A. sparsifolia could adapt to shaded conditions after a period of exposure to low-light conditions. However, whether or not the sun plant A. sparsifolia can adapt to natural light intensity after initial exposure to shaded conditions remains unknown. The specific light adaptation mechanism of this species is yet to be identified. In this study, the characteristics of the photosystem II (PSII) of A. sparsifolia exposed to natural light after the initial treatment under shaded lighting conditions were examined. Our results indicated that the PSII activity of A. sparsifolia under the specified condition was low; the thickness of leaves was reduced and occurred as an adaptive response to capture high amounts of light and exhibit high intensity of light-use efficiency. Shade leaves differed in terms of chlorophyll. Furthermore, the excess excitation energy has been converted to thermal dissipation energy to maintain energy balance. Shade-grown plants cannot adapt to strong irradiance, which is normal in plants for a short period when they are initially maintained under low-light conditions. Therefore, A. sparsifolia should not be considered as a typical sun plant.  相似文献   

3.
马天光  李向义  林丽莎  李磊  李世民  王波 《生态学报》2018,38(23):8466-8474
以塔克拉玛干沙漠南缘荒漠绿洲过渡带优势种骆驼刺为试验材料,研究正常光照(NL)、中度遮阴(MS)和重度遮阴(SS)3种不同遮阴环境对骆驼刺(Alhagi sparsifoliashap.)叶厚、单叶面积、比叶面积、比叶质量等叶性状参数和相对含水量、水势、失水速率、气孔导度、蒸腾速率以及水分利用效率等水分生理参数的影响。结果显示:随着光照强度的降低,骆驼刺的叶片厚度(LT)、比叶质量(LMA)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)明显降低,而单叶面积(LA)、比叶面积(SLA)、相对含水量(RWC)、失水速率(RWL)和水势(WP)明显升高;各叶性状参数与水分生理参数之间均有极显著的相关性。说明:骆驼刺在遮阴环境下,其叶性状特征主要通过单叶面积和单叶干物质积累的变化来响应遮阴环境;其水分生理特征主要是牺牲对水分胁迫具有较好抗逆性的水分生理特征并通过气孔调节和更多的水分消耗用于维持一定的光合能力来响应遮阴环境。叶性状与水分生理参数相关性分析表明,遮阴环境下骆驼刺叶性状变化主要通过影响RWL、WP、Tr和WUE进而影响其水分生理特征的变化。因此,建议可利用遮阴措施对极端干旱区荒漠植物骆驼刺进行植被恢复,但其遮光度应设置在70%—80%自然光之间。  相似文献   

4.
5.
The increased frequency of heat waves due to climate change poses a threat to all organisms. Microalgae are the basis of aquatic food webs, and high temperatures have significant impacts on their adaptation and survival rates. Algae respond to environmental changes by modulating their photosynthetic rates and biochemical composition. This study aims to examine the effect of elevated temperature on similar taxa of marine Chlorella originating from different latitudes. Strains from the Antarctic, temperate zone, and the tropics were grown at various temperatures, ranging from 4 to 38, 18 to 38, and 28 to 40 °C, respectively. A pulse-amplitude modulated (PAM) fluorometer was used to assess their photosynthetic responses. Parameters including maximum quantum efficiency (F v/F m), relative electron transport rate (rETR), and light harvesting efficiency (α) were determined from the rapid light curves (RLCs). In addition, the composition of fatty acids was compared to evaluate changes induced by the temperature treatments. Increasing the temperature from 35 to 38 °C for both Antarctic and temperate strains and from 38 to 40 °C for the tropical strain resulted in severe inhibition of photosynthesis and suppressed growth. Although all the strains demonstrated the ability to recover from different stress levels, the tropical strain was able to recover most rapidly while the Antarctic strain had the slowest recovery. The results underline that the thermal threshold for the analysed Chlorella strains temperature ranges between 38 and 40 °C. Furthermore, the analysed strains exhibited different trends in their response to elevated temperatures and recovery capabilities.  相似文献   

6.
The submersed aquatic vegetation (SAV) species Vallisneria americana Michx. (tape grass) is a valuable resource in the Caloosahatchee estuary and in many other aquatic systems. Given the variable nature of freshwater inflows and environmental conditions in the Caloosahatchee, it is necessary to understand how tape grass will respond to high and low salinity conditions at different light and temperature levels. Specifically, quantitative information is needed as input to modeling tools that can be applied to predict growth and survival of tape grass under a range of environmental conditions present in the estuary. We determined growth rates for small and medium sized tape grass plants obtained from the Caloosahatchee estuary, southwest coastal Florida, USA in freshwater (0.5 psu) under high (331 μE m?2 s?1) and low light (42 μE m?2 s?1) and at 10 psu under high light conditions. We ran six treatments at five temperatures spanning 13–32 °C for 8–9 weeks. The optimum temperature for growth was roughly 28 °C, with a minimum threshold temperature of 13 °C and a maximum threshold temperature of 38 °C. Plants grew fastest in freshwater, at high light and temperatures greater than 20 °C. The slowest growth rates were observed at 13 °C regardless of salinity, light or plant size. Our results suggest that tape grass growth is strongly influenced by water temperature and that additional stressors such as low light and elevated salinity can reduce the range of temperature tolerance, especially at colder water temperatures.  相似文献   

7.
The present study was performed to investigate the possible role of carbon (C) and nitrogen (N) metabolism in adaptation of Indian mustard (Brassica juncea L.) growing under ambient (370 ± 15 ppm) and elevated CO2 (700 ± 15 ppm), and jointly in elevated CO2 and temperature (30/22 °C for day/night). The key enzymes responsible for C–N metabolism were studied in different samples of Brassica juncea L. collected from ambient (AMB), elevated (ELE) and ELExT growth conditions. Total percent amount of C and N in leaves were particularly estimated to establish a clear understanding of aforesaid metabolism in plant adaptation. Furthermore, key morphological and physiological parameters such as plant height, leaf area index, dry biomass, net photosynthetic rate, stomatal conductance, transpiration, total protein and chlorophyll contents were also studied in relation to C/N metabolism. The results indicated that the C-metabolizing enzymes, such as (ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, NAD-malic enzyme, NADP-malic enzyme and citrate synthase) and the N-metabolizing enzymes, such as (aspartate amino transferase, glutamine synthetase, nitrate reductase and nitrite reductase) showed significantly (P < 0.05) higher activities along with the aforesaid physiological and biochemical parameters in order of ELE > ELExT > AMB growth conditions. This is also evident by significant (P < 0.05) increase in percent contents of C and N in leaves as per said order. These findings suggested that improved performance of C–N metabolism could be a possible approach for CO2 assimilation and adaptation in Brassica juncea L. against elevated CO2 and temperature prevailing in climate change scenarios.  相似文献   

8.
Theabrownins (TB) are water-soluble phenolic compounds associated with the various health benefits of Pu-erh tea, a post-fermented Chinese dark tea. This work reports on the production of theabrownins from infusions of sun-dried green tea leaves using a pure culture of Aspergillus fumigatus isolated from a solid-state Pu-erh tea fermentation. A theabrownins yield of 158 g kg?1 sun-dried green tea leaves was obtained in 6 days at 45 °C in an aerobic fermentation. In a 2 l fermenter, the yield of theabrownins was 151 g kg?1 sun-dried green tea leaves in 48 h of aerobic culture (45 °C, 1 vvm aeration rate, 250 rpm agitation speed). Extracellular polyphenol oxidase and peroxidase of A. fumigatus contributed to this bioconversion. Repeated batch fermentation process was used for producing theabrownins but was less productive than the batch process.  相似文献   

9.
IPCC predictions indicate an increase in temperatures by 1.5–7°C in some Amazonian regions during the twenty-first century. These changes could disrupt the present distribution patterns of organisms, including wetland plant species. In this work, we determined in microcosms the effects of scenarios combining elevated temperature and atmospheric CO2 concentration on the germination and initial growth of the arborescent Amazonian aquatic macrophyte Montrichardia arborescens. Seeds were germinated, and seedlings produced were monitored over a 5-month period in four microcosms: Control: ambient temperature and CO2 level; Mild: Control + 1.5°C and + 200 ppm CO2; intermediate: control + 2.5°C and + 400 ppm CO2; Extreme: Control + 4.5°C and + 850 ppm of CO2. Rapid light response curves and Fv/Fm values taken in seedlings showed a decrease in electron transportation rate with CO2 and temperature elevation. Mild and Intermediate treatments stimulated biomass production; Extreme treatment and Control produced similar results. The severe climatic changes expected in the future may negatively influence carbon accumulation in M. arborescens. Since aquatic macrophytes in Amazonian wetlands and wetlands worldwide are key plant species, further studies are needed to predict their fate in a global change perspective.  相似文献   

10.
Light is an important environmental regulator of diverse growth and developmental processes in plants. However, the mechanisms by which light quality regulates root growth are poorly understood. We analyzed lateral root (LR) growth of tobacco seedlings in response to three kinds of light qualities (red, white, and blue). Primary (1°) LR number and secondary (2°) LR density were elevated under red light (on days 9 and 12 of treatment) in comparison with white and blue lights. Higher IAA concentrations measured in roots and lower in leaves of plants treated with red light suggest that red light accelerated auxin transport from the leaves to roots (in comparison with other light qualities). Corroborative evidence for this suggestion was provided by elevated DR5::GUS expression levels at the shoot/root junction and in the 2° LR region. Applications of N-1-naphthylphthalamic acid (NPA) to red light-treated seedlings reduced both 1° LR number and 2° LR density to levels similar to those measured under white light; DR5::GUS expression levels were also similar between these light qualities after NPA application. Results were similar following exogenous auxin (NAA) application to blue light-treated seedlings. Direct [3H]IAA transport measurement indicated that the polar auxin transport from shoot to root was increased by red light. Red light promoted PIN3 expression levels and blue light reduced PIN1, 34 expression levels in the shoot/root junction and in the root, indicating that these genes play key roles in auxin transport regulation by red and blue lights. Overall, our findings suggest that three kinds of light qualities regulate LR formation in tobacco seedlings through modification of auxin polar transport.  相似文献   

11.
12.
The content and composition of pigments were examined in the third leaf of Zea mays L. plants grown under controlled environment at near-optimal temperature (24°C) or sub-optimal temperature (14°C) at a light intensity of either 200 or 600 μmol m?2 s?1. Compared to leaves grown at 24°C, leaves grown at 14°C showed a large reduction in the chlorophyll (Chl) content, a marked decrease in the Chl a/b ratio, and a large increase in the ratio of total carotenoids/Chl a+b. Leaves grown at 14°C showed a much lower content of β-carotene than leaves grown at 24°C, while the content of the carotenoids of the xanthophyll cycle (violaxanthin [V] + antheraxanthin [A] + zeaxanthin [Z]) was markedly higher in the former leaves as compared to the latter leaves; neoxanthin and lutein were affected by the growth temperature to a much lesser extent. The xanthophylls/β-carotene ratio was about three times higher in leaves grown at 14°C as compared to leaves grown at 24°C. On a chlorophyll basis, the two types of leaves hardly differed in their level of β-carotene, while the levels of the xanthophylls (including lutein and neoxanthin) were higher in 14°C-grown leaves as compared to 24°C-grown leaves. In leaves grown at 14°C, 40 and 56% of the V+A+Z pool was in the form of zeaxanthin at low light intensity and high light intensity, respectively. Only trace amounts of zeaxanthin, if any, were present in leaves grown at 24°C. The changes in the pigment composition induced by growth at sub-optimal temperature were more pronounced at a light intensity of 600 as compared to 200 μmol m?2 s?1. In the given range, the light intensity slightly affected the composition of pigments in leaves grown at 24°C. The physiological significance of the modifications to the pigment composition induced by growth at sub-optimal temperature is discussed.  相似文献   

13.
Temperature and light intensity effects on biomass and lipid production were investigated in Ettlia oleoabundans to better understand some fundamental properties of this potentially useful but poorly studied microalgal species. E. oleoabundans entered dormant state at 5 °C, showed growth at 10 °C, and when exposed to light at 70 μmol photons per square meter per second at 10 °C, cells reached a biomass concentration of >2.0 g?L?1 with fatty acid methyl esters of 11.5 mg?L?1. Highest biomass productivity was at 15 °C and 25 °C regardless of light intensity, and accumulation of intracellular lipids was stimulated by nitrate depletion under these conditions. Although growth was inhibited at 35 °C, at 130 μmol photons per square meter per second lipid content reached 10.37 mg?L?1 with fatty acid content more favorable to biodiesel dominating; this occurred without nitrate depletion. In a two-phase temperature shift experiment at two nitrate levels, cells were shifted after 21 days at 15 °C to 35 °C for 8 days. Although after the shift growth continued, lipid productivity per cell was less than that in the 35 °C cultures, again without nitrate depletion. This study showed that E. oleoabundans grows well at low temperature and light intensity, and high temperature can be a useful trigger for lipid accumulation independent of nitrate depletion. This will prove useful for improving our knowledge about lipid production in this and other oleaginous algae for modifying yield and quality of algal lipids being considered for biodiesel production.  相似文献   

14.
The understanding of relationships between the plants and environmental variables is important for ecological restoration. The objective of this research was to investigate the controlling soil factor in plant growth and salt tolerance of leguminous plant Alhagi sparsifolia Shap. (A. sparsifolia) in a saline desert ecosystem of western China. Results showed that coverage of A. sparsifolia was positively linked to soil total K. A. sparsifolia accumulated the toxic Na+ in either roots or stems and thus reduced their allocation in the leaves to adapt the salt stress. The most important factor that determined Na+ uptake of A. sparsifolia was soil total K content, which suggests that total K can alleviate toxic Na+ accumulation in A. sparsifolia. In addition, there was a significant negative correlation among toxic Cl? concentration in A. sparsifolia, soil total K and pH. Overall, soil total K accounted for 18.2% of plant growth and salt tolerance of A. sparsifolia, followed by soil pH 13.1%, and soil total P 11.6%. In order to restore A. sparsifolia in the degraded desert ecosystems on salinized soil, first we need to consider the effects of soil total K, and then synergistically consider the soil pH and total P.  相似文献   

15.
尹辉  张波  荆瑞雪  曾凡江  牟书勇 《生态学报》2019,39(18):6745-6752
碳(C)、氮(N)、磷(P)元素在植物各器官中的组成,及植物表面结构差异是其对外界环境适应性的重要表征。以干旱区3个地理种群骆驼刺(塔里木盆地策勒种群,吐鄯托盆地托克逊种群,准噶尔盆地阜康种群)为研究对象,通过对植株各器官C,N,P元素组成的测定及表面形貌观测,对其在不同环境中的适应特性进行了比较研究。结果表明:(1)同一种群的骆驼刺,C元素在各器官中的分配没有显著规律;N元素在叶片中含量最高,茎中最低;策勒种群和阜康种群的P含量,叶片中最高,茎与刺中差异不显著;但托克逊种群茎中P含量显著高于其他部位。(2)3个地理种群的骆驼刺叶中元素组成相比,策勒种群C,N含量均最高,托克逊种群C,N含量最低;3个种群叶片的P含量,C∶N,C∶P,N∶P值均没有显著差异。刺中元素含量相比,C含量没有显著差异;N含量阜康种群策勒种群托克逊种群。茎中元素含量相比,N含量差异不显著,但托克逊种群茎中P含量为其他两个种群的2倍,可能与托克逊土壤中高浓度的全N,速效N,速效P有关。(3)托克逊种群表皮极厚,蜡质非常致密,各器官气孔密度均高于其他两个种群;策勒种群比阜康种群叶表皮增厚,蜡质致密,但叶片气孔密度却减小;策勒种群和阜康种群茎与刺的气孔密度差异不显著。研究表明,策勒种群骆驼刺最适应当地环境条件:其叶片具有最高的C,N含量,且表面结构没有明显的干旱胁迫特征。托克逊种群表现出明显的干旱适应特征:其表皮增厚,蜡质致密,气孔密度增大,叶片C,N含量最低。虽然托克逊种群茎中P含量显著高于其他地理种群,但3个地理种群骆驼刺叶片中C∶N,C∶P,N∶P比值保持恒定,C∶N=30.6±4.3,C∶P=357.4±49.9,N∶P=12.0±2.4,说明骆驼刺能够保持较高内稳性,这也可能是其在新疆各地广泛生存的重要原因。  相似文献   

16.
Callus cultures of the endemic South-African legume Cyclopia subternata were cultivated under varying light and temperature conditions to determine their influence on biomass growth and bioflavonoids accumulation. Experimental modifications of light included complete darkness, light of different spectral quality (white, red, blue and yellow) and ultraviolet C (UVC) irradiation. The calli were also subjected to elevated temperature or cold stress. Among the tested light regimes, cultivation under blue light resulted in the highest levels of hesperidin (H)—118.00 mg 100 g?1 dry weight (DW) on 28 days of experiment, as well as isoflavones: 7-O-β-glucosides of calycosin (CG), pseudobaptigenin (PG) and formononetin (FG)—28.74, 19.26 and 10.32 mg 100 g?1 DW, respectively, in 14-days old calli. UVC irradiation applied on 20 days stimulated the accumulation of H (204.14 mg 100 g?1 DW), CG (31.84 mg 100 g?1 DW) and PG (18.09 mg 100 g?1 DW) in 28 days culture by 140, 46 and 165 %, respectively, without negatively influencing callus growth. Low temperature (13 °C) increased CG content by over 1,500 % (235.29 mg 100 g?1 DW) when applied during the whole 28-days growth cycle, at the same time causing 95 % decrease in culture growth in comparison to reference calli maintained at 24 °C. On the contrary, elevated temperature (29 °C) applied during the second half of the culture period resulted in over 300 and 500 % increase in CG and PG content (61.76 and 58.89 mg 100 g?1, respectively) while maintaining relatively high biomass yield.  相似文献   

17.
The photosynthetic response was investigated on Chrysanthemum morifolium under dynamic light conditions in the 20–35 °C temperature range to evaluate the effect of climatic variables on photosynthetic induction. The plant material was grown under uniform, controlled conditions and its gas exchange was analyzed. The gas exchange measurements were used to investigate the rate of induction, momentary induction state, and the opening of stomata. At the varying temperature ranges and under dynamic light conditions, C. morifolium reached a quasi-steady-state induction equilibrium (ISeq(PAR,T)) within 14–45 min. For the same level of photosynthetically active radiation (PAR), the equilibrated level of steady-state induction increased as the temperature increased. It was highest approximately at 30 °C. The induction state was equilibrated at a lower level as the temperature increased to 35 °C. The interaction effect of PAR and temperature on induction state was not significant. The rate of photosynthetic induction and the time required at which the induction reached its 90 % value (t 90) was influenced by PAR significantly. The light history of a leaf had a significant effect on t 90, indicating that the time to reach a steady-state induction is different depending on the light environment and the period at which the leaf was exposed to light. The velocity of the photosynthetic induction was not affected by the temperature. It was associated with stomatal conductance of the leaf prior to the onset of light (g Sini).  相似文献   

18.
The toxicity of organic plant extracts to Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) was assessed for three tropical plant species: branches, leaves, and seeds of Annona montana (Annonaceae), branches of Aristolochia paulistana (Aristolochiaceae), and leaves and branches of Casearia sylvestris (Salicaceae). The screening assay resulted that the extracts of A. montana seeds obtained with hexane (LC50?=?534.75 mg kg?1 and LT50?=?6.10 days) and with dichloromethane (LC50?=?424.67 mg kg?1 and LT50?=?5.03 days) were the most promising treatments, followed by the extract prepared from A. montana leaves with hexane (LC50?=?837.70 mg kg?1 and LT50?=?4.90 days). Moreover, extracts (at 1,500 mg kg?1) prepared from C. sylvestris branches with dichloromethane and A. paulistana with hexane caused significant mortality (37% and 41.5%, respectively) beyond sublethal effects on S. zeamais. Therefore, based on the biological assays, extraction yield, and evaluation of the chromatographic profile of the crude extracts by TLC, the hexane extract of A. montana seeds was selected and fractioned using liquid-liquid partitioning. The hydroalcoholic fraction caused mortality of 55.5%, significantly superior to dichloromethane fraction, which caused 35.5% of mortality. Chemical analyses (1H NMR, HPLC, and TLC) were performed, and the results showed the presence of alkaloids and acetogenins in both active fractions, which have been associated with bioactivity. Therefore, extracts prepared from A. montana seeds (especially) is an interesting source of new compounds with promising grain-protectant properties.  相似文献   

19.
Slow growth storage has been achieved for Castanea sativa (cv. ‘Montemarano’) shoot cultures over a duration of 48 mo at a temperature of 8°C, where 82% of explants survived and were able to resume normal growth after transfer to standard culture conditions at 23°C. The evaluation of the chlorophyll content of leaves also showed no differences between material stored for 48 mo and control material subcultured at 23°C. With a storage temperature of 4°C, the survival of shoots was significantly lower at approximately 56% after 12 mo, and no plants recovered after 24-mo storage. The presence of 6-benzyladenine 0.44 μM in the culture medium proved to be necessary for the recovery of healthy shoots, while pre-treatments with different concentrations of abscisic acid did not significantly influence the survival of shoots following storage conditions. A low level of light during slow growth storage resulted in positive effects on the rate of shoot survival over the longest preservation periods.  相似文献   

20.
Global warming is affecting Mediterranean ecosystems, in which Arbutus unedo represents an important species. Mesophyll protoplasts are convenient material to study plant DNA integrity, nevertheless their release from mature plants along the year has not been reported in sclerophyll species. In this respect, in the present study the chance to isolate protoplasts from leaf tissues of A. unedo in different seasons was investigated. The digestion was obtained using Macerozyme R10 (1%) and Cellulase Onozuka RS (2%), with 0.6 M of mannitol, incubated for 4 h at 25 °C in the dark. In spring, soft leaves of different ages were studied to identify the most suitable material and protoplast yields were significantly influenced, with the still expanding 4th leaf characterized by the highest amount. Protoplast release decreased during the growing season when leaves become partially hardened, while their obtainment was quite impossible in summer and winter, due to leaf hardening. In November, an increase of incubation time (16 h) and of Cellulase RS (4%) or mannitol concentration (0.8 M) was needed with chilled leaves from the field; conversely, a good source for protoplasts were the green soft leaves coming from detached and pruned branches placed in controlled environment at spring temperatures. The employment of polyvinylpyrrolidone-40 during isolation procedure is discussed. The isolated protoplasts were employed to assess the DNA integrity, by using single cell gel electrophoresis (SCGE). The X-irradiated nucleoids were significantly damaged confirming that the present approach could be used in the selection of elite material of A. unedo devoted to fruit plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号