首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypothalamic-pituitary-adrenal (HPA) axis and as a neuromodulator in the brain. One target of CRF modulation is the locus coeruleus (LC)-norepinephrine system, which coordinates arousal components of the stress response. Hypersecretion of CRF and dysregulation of targets downstream from CRF, such as the HPA axis and LC-norepinephrine system, are characteristic features of many stress-related psychiatric diseases, suggesting a causal role for CRF and its targets in the development of these disorders. This review will describe sex differences in CRF and the LC-norepinephrine system that can increase stress sensitivity in females, making them vulnerable to stress-related disorders. Evidence for gonadal hormone regulation of hypothalamic CRF is discussed as an effect that can lead to increased HPA axis activity in females. Sex differences in the structure of LC neurons that create the potential for hyperarousal in response to emotional stimuli are described. Finally, sex differences at the molecular level of the CRF(1) receptor that make the LC-norepinephrine system more reactive in females are reviewed. The implications of these sex differences for the treatment of stress-related psychiatric disorders also will be discussed.  相似文献   

2.
Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD), occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF) and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR) function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.  相似文献   

3.
The phenomenon of higher rates of affective disorders in women illustrates many of the difficulties as well as promises of translating preclinical models to human disorders. Abnormalities in the regulation of the hypothalamic-pituitary adrenal axis and the sympathoadrenomedullary system have been identified in depression and anxiety disorders, and these disorders are clearly precipitated and exacerbated by stress. Despite the striking sex difference in the prevalence of depression and anxiety disorders, attempts to identify corresponding sex differences in stress response reactivity in animal models have met with limited success. Processes which may contribute to increased rates of affective disorders in women are greater fluxes in reproductive hormones across the life span, and increased sensitivity to catecholamine augmentation of emotional memory consolidation.  相似文献   

4.
The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design.  相似文献   

5.

Background

Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults.

Methods

Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys.

Results

Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex.

Conclusions

Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.
  相似文献   

6.
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress‐induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders.  相似文献   

7.
Stressful life events impact on memory, cognition and emotional responses, and are known to precipitate mood/anxiety disorders. It is increasingly recognized that stress and its neurochemical and endocrine mediators induce changes in glutamate synapses and circuitry, and this in turn modify mental states. Half a century after the monoamine hypothesis, it is widely accepted that maladaptive changes in excitatory/inhibitory circuitry have a primary role in the pathophysiology of mood/anxiety disorders. The neuroplasticity hypothesis posits that volumetric changes consistently found in limbic and cortical areas of depressed subjects are in good part due to remodeling of neuronal dendritic arbors and loss of synaptic spines. A considerable body of work, carried out with in vivo microdialysis as well as alternative methodologies, has shown that both stress and corticosterone treatment induce enhancement of activity-dependent glutamate release. Accordingly, results from preclinical studies suggest that stress- and glucocorticoid-induced enhancement of glutamate release and transmission plays a main role in the induction of maladaptive cellular effects, in turn responsible for dendritic remodeling.Additional recent work has showed that drugs employed for therapy of mood/anxiety disorders (antidepressants) prevent the enhancement of glutamate release induced by stress. Understanding the action of traditional drugs on glutamate transmission could be of great help in developing drugs that may work directly at this level.  相似文献   

8.
Here, we review a novel concept namely the compensatory immune-regulatory reflex system (CIRS) as applied to the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD). There is evidence that a substantial subset of individuals with MDD and BD exhibit an activation of the immune-inflammatory response system (IRS), as indicated by an increased production of macrophagic M1 and T helper (Th)-1 pro-inflammatory cytokines, interleukin (IL)-6 trans-signaling, positive acute phase proteins (APPs), and complement factors. These immune aberrations appear to be evident during the course of major affective episodes of either depressive or (hypo) manic polarity. Here, we review (a) the current state of the art of CIRS functions in both mood disorders and (b) the possible role of CIRS-related biomarkers for the understanding of affective disorders within the framework of precision psychiatry that could also provide novel drug targets for both MDD and BD. CIRS-related abnormalities in mood disorders include elevated Th-2 and T regulatory (Treg) activities with increased IL-4 and IL-10 production, classical IL-6 signaling, increased levels of sIL-1R antagonist (sIL-1RA), soluble IL-2 (sIL-2R) and tumor necrosis factor–α- receptors, and positive APPs, including haptoglobin, hemopexin, α1-acid glycoprotein, α1-antitrypsin, and ceruloplasmin. It is concluded that CIRS is involved in MDD and BD by regulating the primary immune-inflammatory response, thereby contributing to spontaneous and antidepressant-promoted recovery from the acute phase of illness. Signs of activated IRS and CIRS pathways are observed in the remitted phases of both disorders indicating that there is no return to the original homeostasis after an acute episode, while later episodes of mood disorders are characterized by sensitized IRS and CIRS responses. New z-unit weighted composite biomarker scores are proposed, which reflect different aspects of IRS versus CIRS activation and may be used to estimate different IRS/CIRS activity ratios in mood and other neuroimmune disorders.  相似文献   

9.
Two cognate receptors (CRF(1) and CRF(2)) mediate the actions of the stress-regulatory corticotropin-releasing factor (CRF) family of peptides. Defining the respective roles of these receptors in the central nervous system is critical in understanding stress neural circuitry and the development of psychiatric disorders. Here, we examined the role of CRF(2) in several paradigms that assess coping responses to stress. We report that CRF(2) knockout mice responded to a novel setting with increased aggressive behavior toward a bulbectomized conspecific male and show increased immobility during acute swim stress compared with wild-type mice. In addition, CRF(2)-deficient mice exhibited impaired adaptation to isolation stress as evinced by prolonged hypophagia and associated weight loss. Collectively, these results point toward a role for CRF(2) pathways in neural circuits that subserve stress-coping behaviors.  相似文献   

10.
The function of serotonin transporters (SERTs) is related to mood regulation. Mice with deficient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPR-related variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic-pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERT-related mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.  相似文献   

11.
The function of serotonin transporters (SERTs) is related to mood regulation. Mice with defi- cient or reduced SERT function (SERT knockout mice) show several behavioral changes, including increased anxiety-like behavior, increased sensitivity to stress, and decreases in aggressive behavior. Some of these behavioral alterations are similar to phenotypes found in humans with short alleles of polymorphism in the 5-hydroxytryptamine (5-HT) transporter-linked promoter region (5-HTTLPR). Therefore, SERT knockout mice can be used as a tool to study 5-HTTLPRrelated variations in personality and may be the etiology of affective disorders. This article focuses on the cellular and molecular alterations in SERT knockout mice, including changes in 5-HT concentrations and its metabolism, alterations in 5-HT receptors, impaired hypothalamic- pituitary-adrenal gland axis, developmental changes in the neurons and brain, and influence on other neurotransmitter transporters and receptors. It also discusses the possible relationships between these alterations and the behavioral changes in these mice. The knowledge provides the foundation for understanding the cellular and molecular mechanisms that mediate the SERTrelated mood regulation, which may have significant impact on understanding the etiology of affective disorders and developing better therapeutic approaches for affective disorders.  相似文献   

12.
The brain-derived neurotrophic factor (BDNF) Val(66) Met allelic variation is linked to both the occurrence of mood disorders and antidepressant response. These findings are not universally observed, and the mechanism by which this variation results in increased risk for mood disorders is unclear. One possible explanation is an epistatic relationship with other neurotransmitter genes associated with depression risk, such as the serotonin-transporter-linked promotor region (5-HTTLPR). Further, it is unclear how the coexistence of the BDNF Met and 5-HTTLPR S variants affects the function of the affective and cognitive control systems. To address this question, we conducted a functional magnetic resonance imaging (fMRI) study in 38 older adults (20 healthy and 18 remitted from major depressive disorder). Subjects performed an emotional oddball task during the fMRI scan and provided blood samples for genotyping. Our analyses examined the relationship between genotypes and brain activation to sad distractors and attentional targets. We found that 5-HTTLPR S allele carriers exhibited stronger activation in the amygdala in response to sad distractors, whereas BDNF Met carriers exhibited increased activation to sad stimuli but decreased activation to attentional targets in the dorsolateral prefrontal and dorsomedial prefrontal cortices. In addition, subjects with both the S allele and Met allele genes exhibited increased activation to sad stimuli in the subgenual cingulate and posterior cingulate. Our results indicate that the Met allele alone or in combination with 5-HTTLPR S allele may increase reactivity to sad stimuli, which might represent a neural mechanism underlying increased depression vulnerability.  相似文献   

13.
Negative mood and stress are associated with cardiovascular and metabolic disease. There are likely many physiological mechanisms underlying the poor health outcomes. The relationship of psychological states (negative mood, life stress, and stress-responsive hormones) and adiponectin, an adipokine that promotes insulin sensitivity, was investigated in two separate studies. The two groups of participants included 52 healthy, premenopausal women, and 63 postmenopausal women with a range of stress levels. The relationship between adiponectin and psychological state (perceived stress and negative mood) was examined cross-sectionally in both groups of participants, but also prospectively (1 year later) in the group of postmenopausal women.In premenopausal women, negative mood and nocturnal urinary epinephrine were significantly related to adiponectin, independent of BMI. In postmenopausal women, negative mood was not associated with adiponectin cross-sectionally, but negative mood was a significant predictor for lower levels of adiponectin 1 year later, independent of initial adiponectin concentrations and changes in body mass index. Lastly, having a depressive disorder was related to lower adiponectin. As adiponectin levels are associated with insulin resistance, obesity, and diabetes mellitus, these findings suggest there may be an adiponectin-mediated pathway explaining in part how negative mood affects metabolic health. Mechanistic studies are needed to explore this potential relationship further.  相似文献   

14.
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.  相似文献   

15.
Child abuse is the most significant environmental risk factor for the development of mood disorders, which occur twice as frequently in women as in men. To determine whether juvenile social subjugation (JSS) of rats induces mood disorder-like symptoms, we exposed 28 day-old male and female rats to daily aggressive acts from aggressive male residents. Each rat received pins, kicks, and dominance postures from the resident for 10 min per day for 10 days. When the rats were adults, we tested their anxiety- and depression-like behaviors. In addition, we measured circulating basal and stress-evoked corticosterone (CORT) levels, and weighed the adrenal glands. Although the amount of JSS was indistinguishable between males and females, females were nonetheless more severely affected by the experience. Subjugated females became immobile more quickly during forced swim tests, and made fewer investigatory approaches during the social interaction test than control females. Juvenile social subjugation increased closed arm time in the elevated plus maze of males and females, but the effect of social subjugation was greater in females. Finally, stress-evoked CORT levels were significantly higher, and adrenal gland weights were significantly heavier, in subjugated females relative to their controls and to subjugated males. Our results demonstrate that JSS increases depression- and anxiety-like behaviors and sensitizes the stress response system in a sex-specific manner.  相似文献   

16.
Previously demonstrated age-related changes in the catabolic melanocortin system that may contribute to middle-aged obesity and aging anorexia, raise the question of the potential involvement of corticotropin-releasing factor (CRF) in these phenomena, as this catabolic hypothalamic mediator acts downstream to melanocortins. Catabolic effects of CRF were shown to be mediated by both CRF1 (hypermetabolism) and CRF2 (anorexia) receptors. To test the potential role of CRF in age-related obesity and aging anorexia, we investigated acute central effects of the peptide on energy balance in male and female rats during the course of aging.Effects of an intracerebroventricular CRF injection on food intake (FI), oxygen-consumption (VO2), core- and tail skin temperatures (Tc and Ts) were studied in male and female Wistar rats of five different age-groups (from 3- to 24-month). Anorexigenic responsiveness was tested during 180-min re-feeding (FeedScale) following 24-h fasting. Thermoregulatory analysis was performed by indirect calorimetry (Oxymax) complemented by thermocouples recording Tc and Ts (indicating heat loss).CRF suppressed FI in 3-month male and female animals. In males, CRF-induced anorexia declined with aging, whereas in females it was maintained in all groups. The peptide increased VO2 and Tc in all male age-groups, while the weaker hypermetabolic response characterizing 3-month females declined rapidly with aging.Thus, age-related alterations in acute central anorexigenic and hypermetabolic effects of CRF show different non-parallel patterns in males and females. Our findings underline the importance of gender differences. They also call the attention to the differential age-related changes in the CRF1 and CRF2 receptor systems.  相似文献   

17.
This article is part of a Special Issue “SBN 2014”.Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF’s ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described.  相似文献   

18.
Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior.  相似文献   

19.
Women are at higher risk of anxiety and mood disorders, especially at transitions across the reproductive life cycle (premenstruum, postpartum, menopause). Premenstrual dysphoric disorder (PMDD) is one of female mood disorders associated with changing ovarian hormone levels. Because anxiety and depression frequently occur in women with PMDD, premenstrual dysphoria might be a manifestation of certain vulnerability traits increasing the risk of those disorders. The present study was conducted to elucidate a potential association between estrous cycle-dependent aggression, the rodent model of "premenstrual irritability" (resident-intruder test), and anxiety (elevated plus maze), depressive-like traits (forced swim test) as well as carbohydrate craving in female Wistar rats. Some aggressive and nonaggressive females were restraint-stressed before testing to determine their sensitivity to stress at different hormonal stages. The results revealed that females expressing the estrous cycle-dependent aggression but not those not expressing cycle-dependent aggression spent longer time immobile and shorter time swimming in the forced swim test at metestrus compared to proestrus phase of the estrous cycle. There was no difference between aggressive and nonaggressive females in anxiety, locomotor activity and sensitivity to restraint stress and sucrose consumption. The present study suggests a common neurobiological background for the estrous cycle-dependent aggression and depressive-like traits in rodents. This phenomenon could potentially aid the elucidation of premenstrual emotional dysfunctions and might be used as an ethological model to study a biochemical and genetic proneness to depression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号