首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
F-spondin and Mindin are members of a subgroup of the thrombospondin type 1 (TSR) class molecules, defined by two domains of homology, the FS1/FS2 and TSR domains. The TSRs of F-spondin proteins are typical of class 2 TSRs. F-spondin and Mindin are evolutionarily conserved proteins. The embryonic expression of the vertebrate genes is enriched in the nervous system, mainly at the floor plate and the hippocampus. Similar to thrombospondin, F-spondin and Mindin are extracellular matrix attached molecules that promote neurite outgrowth and inhibit angiogenesis. Analysis of gain and loss of function experiments reveal that F-spondin is required for accurate pathfinding of embryonic axons. F-spondin plays a dual role in patterning axonal trajectories: it promotes the outgrowth of commissural and inhibits the outgrowth of motor axons. Macrophages of Mindin-deficient mice exhibit defective responses to a broad spectrum of microbial stimuli. This may implicate Mindin and F-spondin in inflammatory processes in the nervous system.  相似文献   

2.
A Klar  M Baldassare  T M Jessell 《Cell》1992,69(1):95-110
The floor plate is a cell group implicated in the control of neural cell pattern and axonal growth in the developing vertebrate nervous system. To identify molecules that might mediate the functions of the floor plate, we have used subtractive hybridization techniques to isolate floor plate-enriched cDNA clones. One such clone encodes a novel secreted protein, F-spondin, which is expressed at high levels in the floor plate. The C-terminal half of the protein contains six repeats identified previously in thrombospondin and other proteins implicated in cell adhesion. F-spondin is expressed in the floor plate at the time that axons first extend and at lower levels in the peripheral nerve. Recombinant F-spondin promotes the attachment of spinal cord and sensory neuron cells and the outgrowth of neurites in vitro. F-spondin may contribute to the growth and guidance of axons in both the spinal cord and the PNS.  相似文献   

3.

Background

F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin.

Results

We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca2+-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain.

Conclusion

The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca2+- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.  相似文献   

4.
The commissural axons project toward and across the floor plate. They then turn into the longitudinal axis, extending along the contralateral side of the floor plate. F-spondin, a protein produced and secreted by the floor plate, promotes adhesion and neurite extension of commissural neurons in vitro. Injection of purified F-spondin protein into the lumen of the spinal cord of chicken embryos in ovo resulted in longitudinal turning of commissural axons before reaching the floor plate, whereas neutralizing antibody (Ab) injections caused lateral turning at the contralateral floor plate boundary. These combined in vitro and in vivo results suggest that F-spondin is required to prevent the lateral drifting of the commissural axons after having crossed the floor plate.  相似文献   

5.
The formation of neuronal networks is governed by a limited number of guidance molecules, yet it is immensely complex. The complexity of guidance cues is augmented by posttranslational modification of guidance molecules and their receptors. We report here that cleavage of the floor plate guidance molecule F-spondin generates two functionally opposing fragments: a short-range repellent protein deposited in the membrane of floor plate cells and an adhesive protein that accumulates at the basement membrane. Their coordinated activity, acting respectively as a short-range repellant and a permissive short-range attractant, constricts commissural axons to the basement membrane beneath the floor plate cells. We further demonstrate that the repulsive activity of the inhibitory fragment of F-spondin requires its presentation by the lipoprotein receptor-related protein (LRP) receptors apolipoprotein E receptor 2, LRP2/megalin, and LRP4, which are expressed in the floor plate. Thus, proteolysis and membrane interaction coordinate combinatorial guidance signaling originating from a single guidance cue.  相似文献   

6.
The TSR superfamily is a diverse family of extracellular matrix and transmembrane proteins, many of which have functions related to regulating matrix organization, cell-cell interactions and cell guidance. This review samples some of the contemporary literature regarding TSR superfamily members (e.g. F-spondin, UNC-5, ADAMTS, papilin, and TRAP) where specific functions are assigned to the TSR domains. Combining these observations with the published crystal structure of the TSRs of thrombospondin-1 may hold a key to the development of therapeutic agents for fighting parasitic infection and tumor growth.  相似文献   

7.
Thrombospondin-related anonymous protein, TRAP, has a critical role in the hepatocyte invasion step of Plasmodium sporozoites, the transmissible form of the parasite causing malaria. The extracellular domains of this sporozoite surface protein interact with hepatocyte surface receptors whereas its intracellular domain acts as a link to the sporozoite actomyosin motor system. Liver heparan sulfate proteoglycans have been identified as potential ligands for TRAP. Proteoglycan binding has been associated with the A- and TSR domains of TRAP. We present the solution NMR structure of the TSR domain of TRAP and a chemical shift mapping study of its heparin binding epitope. The domain has an elongated structure stabilized by an array of tryptophan and arginine residues as well as disulfide bonds. The fold is very similar to those of thrombospondin type-1 (TSP-1) and F-spondin TSRs. The heparin binding site of TRAP-TSR is located in the N-terminal half of the structure, the layered side chains forming an integral part of the site. The smallest heparin fragment capable of binding to TRAP-TSR is a tetrasaccharide.  相似文献   

8.
Epidermal growth factor-like (EGF) repeats and thrombospondin type 1 repeats (TSRs) are both small cysteine-knot motifs known to be O-fucosylated. The enzyme responsible for the addition of O-fucose to EGF repeats, protein O-fucosyltransferase 1 (POFUT1), has been identified and shown to be essential in Notch signaling. Fringe, an O-fucose beta1,3-N-acetylglucosaminyltransferase, elongates O-fucose on specific EGF repeats from Notch to form a disaccharide that can be further elongated to a tetrasaccharide. TSRs are found in many extracellular matrix proteins and are involved in protein-protein interactions. The O-fucose moiety on TSRs can be further elongated with glucose to form a disaccharide. The discovery of O-fucose on TSRs raised the question of whether POFUT1, or a different enzyme, adds O-fucose to TSRs. Here we demonstrate the existence of a TSR-specific O-fucosyltransferase distinct from POFUT1. Similar to POFUT1, the novel TSR-specific O-fucosyltransferase is a soluble enzyme that requires a properly folded TSR as an acceptor substrate. In addition, we found that a previously identified fucose-specific beta1,3-glucosyltransferase adds glucose to O-fucose on TSRs, but it does not modify O-fucose on an EGF repeat. Similarly, Lunatic fringe, Manic fringe, and Radical fringe are all capable of modifying O-fucose on an EGF repeat, but not on a TSR. Taken together, these results suggest that two distinct O-fucosylation pathways exist in cells, one specific for EGF repeat and the other for TSRs.  相似文献   

9.
Extracellular matrix (ECM) proteins play an important role in early cortical development, specifically in the formation of neural connections and in controlling the cyto-architecture of the central nervous system. F-spondin and Mindin are a family of matrix-attached adhesion molecules that share structural similarities and overlapping domains of expression. Genes for both proteins contain a thrombospondin type I repeat(s) at the C terminus and an FS1-FS2 (spondin) domain. Both the vertebrate F-spondin and the zebrafish mindins are expressed on the embryonic floor plate. In the current study we have cloned the rat homologue of mindin and studied its expression and activity together with F-spondin in the developing rodent brain. The two genes are abundantly expressed in the developing hippocampus. In vitro studies indicate that both F-spondin and Mindin promote adhesion and outgrowth of hippocampal embryonic neurons. We have also demonstrated that the two proteins bind to a putative receptor(s) expressed on both hippocampal and sensory neurons.  相似文献   

10.
F-spondin is a protein mainly associated with neuronal development. It attaches to the extracellular matrix and acts in the axon guidance of the developing nervous system. F-spondin consists of eight domains, six of which are TSR domains. The TSR domain family binds a wide range of targets. Here we present the NMR solution structures of TSR1 and TSR4. TSR domains have an unusual fold that is characterized by a long, nonglobular shape, consisting of two beta-strands and one irregular extended strand. Three disulfide bridges and stack of alternating tryptophan and arginine side-chains stabilize the structure. TSR1 and TSR4 structures are similar to each other and to the previously determined TSR domain X-ray structures from another protein, TSP, although TSR4 exhibits a mobile loop not seen in other structures.  相似文献   

11.
The final chemical structure of a newly synthesized protein is often only attained after further covalent modification. Ideally, a comprehensive proteome analysis includes this aspect, a task that is complicated by our incomplete knowledge of the range of possible modifications and often by the lack of suitable analysis methods. Here we present two recently discovered, unusual forms of protein glycosylation, i.e. C-mannosylation and O-fucosylation. Their analysis by a combined mass spectrometric approach is illustrated with peptides from the thrombospondin type 1 repeats (TSRs) of the recombinant axonal guidance protein F-spondin. Nano-electrospray ionization tandem-mass spectrometry of isolated peptides showed that eight of ten Trp residues in the TSRs of F-spondin are C-mannosylated. O-Fucosylation sites were determined by a recently established nano-electrospray ionization quadrupole time-of-flight tandem-mass spectrometry approach. Four of five TSRs carry the disaccharide Hex-dHex-O-Ser/Thr in close proximity to the C-mannosylation sites. In analogy to thrombospondin-1, we assume this to be Glc-Fuc-O-Ser/Thr. Our current knowledge of these glycosylations will be discussed.  相似文献   

12.
Nr-CAM is a neuronal cell adhesion molecule (CAM) belonging to the immunoglobulin superfamily that has been implicated as a ligand for another CAM, axonin-1, in guidance of commissural axons across the floor plate in the spinal cord. Nr-CAM also serves as a neuronal receptor for several other cell surface molecules, but its role as a ligand in neurite outgrowth is poorly understood. We studied this problem using a chimeric Fc-fusion protein of the extracellular region of Nr-CAM (Nr-Fc) and investigated potential neuronal receptors in the developing peripheral nervous system. A recombinant Nr-CAM-Fc fusion protein, containing all six Ig domains and the first two fibronectin type III repeats of the extracellular region of Nr-CAM, retains cellular and molecular binding activities of the native protein. Injection of Nr-Fc into the central canal of the developing chick spinal cord in ovo resulted in guidance errors for commissural axons in the vicinity of the floor plate. This effect is similar to that resulting from treatment with antibodies against axonin-1, confirming that axonin-1/Nr-CAM interactions are important for guidance of commissural axons through a spatially and temporally restricted Nr-CAM positive domain in the ventral spinal cord. When tested as a substrate, Nr-Fc induced robust neurite outgrowth from dorsal root ganglion and sympathetic ganglion neurons, but it was not effective for tectal and forebrain neurons. The peripheral but not the central neurons expressed high levels of axonin-1 both in vitro and in vivo. Moreover, antibodies against axonin-1 inhibited Nr-Fc-induced neurite outgrowth, indicating that axonin-1 is a neuronal receptor for Nr-CAM on these peripheral ganglion neurons. The results demonstrate a role for Nr-CAM as a ligand in axon growth by a mechanism involving axonin-1 as a neuronal receptor and suggest that dynamic changes in Nr-CAM expression can modulate axonal growth and guidance during development.  相似文献   

13.
The F-spondin genes are a family of extracellular matrix molecules united by two conserved domains, FS1 and FS2, at the amino terminus plus a variable number of thrombospondin repeats at the carboxy terminus. Currently, characterized members include a single gene in Drosophila and multiple genes in vertebrates. The vertebrate genes are expressed in the midline of the developing embryo, primarily in the floor plate of the neural tube. To investigate the evolution of chordate F-spondin genes, I have used the basal position in chordate phylogeny of the acraniate amphioxus. A single F-spondin-related gene, named AmphiF-spondin, was isolated from amphioxus. Based on molecular phylogenetics, AmphiF-spondin is closely related to a particular subgroup of vertebrate F-spondin genes that encode six thrombospondin repeats. However, unlike these genes, expression of AmphiF-spondin is not confined to the midline but is found through most of the central nervous system. Additionally, AmphiF-spondin has lost three thrombospondin repeats and gained two fibronectin type III repeats, one of which has strong identity to a fibronectin type III repeat from Deleted in Colorectal Cancer (DCC). Taken together, these results suggest a complex evolutionary history for chordate F-spondin genes that includes (1) domain loss, (2) domain gain by tandem duplication and divergence of existing domains, and (3) gain of heterologous domains by exon shuffling.   相似文献   

14.
Huwiler KG  Vestling MM  Annis DS  Mosher DF 《Biochemistry》2002,41(48):14329-14339
Thrombospondin-1 (TSP1), a modular secreted glycoprotein, possesses anti-angiogenic activity both in vitro and in vivo. This activity has been localized to the thrombospondin type 1 repeats/domains (TSR). A TSP1 monomer contains three TSRs, each with a hydrophobic cluster with three conserved tryptophans (WxxWxxW), a basic cluster with two conserved arginines (RxR), and six conserved cysteines. Using the baculovirus system, we expressed TSRs of human TSP1 as either the three domains in tandem (P123) or the third domain alone (P3) and demonstrated that both P123 and P3 at nanomolar concentrations inhibit either basic fibroblast-growth-factor or sphingosine-1-phosphate induced endothelial cell migration. Far-UV circular dichroism (CD) indicated that P123 and P3 have a common global fold that is very similar to properdin, a protein with six TSRs. Near-UV CD and fluorescence quenching studies indicated the conserved tryptophans are in a structured, partially solvent-accessible, positively charged environment. N-terminal sequence and mass spectrometry analysis of trypsin-digested TSRs indicated that the RFK linker sequence between P1 and P2 is readily proteolyzed and the conserved arginines are solvent accessible. By a combination of proteolysis and mass spectrometry, the recombinant TSRs were determined to be fully disulfide bonded with a connectivity of 1-5, 2-6, and 3-4 (cysteines are numbered sequentially from N- to C-terminus). TSRs are found in numerous extracellular proteins. These TSRs share the hydrophobic and basic clusters of the TSP TSRs but some have quite different placement of cysteine residues. We propose a sorting of TSRs into six groups that reconciles our results with information about other TSRs.  相似文献   

15.
The ADAMTS superfamily contains several metalloproteases (ADAMTS proteases) as well as ADAMTS-like molecules that lack proteolytic activity. Their common feature is the presence of one or more thrombospondin type-1 repeats (TSRs) within a characteristic modular organization. ADAMTS like-1/punctin-1 has four TSRs. Previously, O-fucosylation on Ser or Thr mediated by the endoplasmic reticulum-localized enzyme protein-O-fucosyltransferase 2 (POFUT2) was described for TSRs of thrombospondin-1, properdin, and F-spondin within the sequence Cys-Xaa(1)-Xaa(2)-(Ser/Thr)-Cys-Xaa-Xaa-Gly (where the fucosylated residue is underlined). On mass spectrometric analysis of tryptic peptides from recombinant secreted human punctin-1, the appropriate peptides from TSR2, TSR3, and TSR4 were found to bear either a fucose monosaccharide (TSR3, TSR4) or a fucose-glucose disaccharide (TSR2, TSR3, TSR4). Although mass spectral analysis did not unambiguously identify the relevant peptide from TSR1, metabolic labeling of cells expressing TSR1 and the cysteine-rich module led to incorporation of [(3)H]fucose into this construct. Mutation of the putative modified Ser/Thr residues in TSR2, TSR3, and TSR4 led to significantly decreased levels of secreted punctin-1. Similarly, expression of punctin-1 in Lec-13 cells that are deficient in conversion of GDP-mannose to GDP-fucose substantially decreased the levels of secreted protein, which were restored upon culture in the presence of exogenous l-fucose. In addition, mutation of the single N-linked oligosaccharide in punctin-1 led to decreased levels of secreted punctin-1. Taken together, the data define a critical role for N-glycosylation and O-fucosylation in the biosynthesis of punctin-1. From a broad perspective, these data suggest that O-fucosylation may be a widespread post-translational modification in members of the ADAMTS superfamily with possible regulatory consequences.  相似文献   

16.
17.
Thrombospondin-1 (TSP-1) contains three type 1 repeats (TSRs), which mediate cell attachment, glycosaminoglycan binding, inhibition of angiogenesis, activation of TGFbeta, and inhibition of matrix metalloproteinases. The crystal structure of the TSRs reported in this article reveals a novel, antiparallel, three-stranded fold that consists of alternating stacked layers of tryptophan and arginine residues from respective strands, capped by disulfide bonds on each end. The front face of the TSR contains a right-handed spiral, positively charged groove that might be the "recognition" face, mediating interactions with various ligands. This is the first high-resolution crystal structure of a TSR domain that provides a prototypic architecture for structural and functional exploration of the diverse members of the TSR superfamily.  相似文献   

18.
Cells in the developing nervous system secrete a large number of proteins that regulate the migration and differentiation of their neighbors. It is shown here that a clonal central nervous system cell line secretes a protein that causes both a rat hippocampal progenitor cell line and primary cortical neural cells to differentiate into cells with the morphological and biochemical features of neurons. This protein was identified as F-spondin. Analysis of F-spondin isoforms secreted from transfected cells shows that the core protein without the thrombospondin type 1 repeats is sufficient to promote neuronal differentiation when adsorbed to a surface. F-spondin can also inhibit neurite outgrowth while allowing the expression of nerve-specific proteins when present in a soluble form at high concentrations. Therefore, F-spondin can alter cell differentiation in multiple ways, depending upon its concentration and distribution between substrate-attached and soluble forms.  相似文献   

19.
Thrombospondin type 1 repeats (TSRs) are biologically important domains of extracellular proteins. They are modified with a unique Glcbeta1,3Fucalpha1-O-linked disaccharide on either serine or threonine residues. Here we identify the putative glycosyltransferase, B3GTL, as the beta1,3-glucosyltransferase involved in the biosynthesis of this disaccharide. This enzyme is conserved from Caenorhabditis elegans to man and shares 28% sequence identity with Fringe, the beta1,3-N-acetylglucosaminyltransferase that modifies O-linked fucosyl residues in proteins containing epidermal growth factor-like domains, such as Notch. beta1,3-Glucosyltransferase glucosylates properly folded TSR-fucose but not fucosylated epidermal growth factor-like domain or the non-fucosylated modules. Specifically, the glucose is added in a beta1,3-linkage to the fucose in TSR. The activity profiles of beta1,3-glucosyltransferase and protein O-fucosyltransferase 2, the enzyme that carries out the first step in TSR O-fucosylation, superimpose in endoplasmic reticulum subfractions obtained by density gradient centrifugation. Both enzymes are soluble proteins that efficiently modify properly folded TSR modules. The identification of the beta1,3-glucosyltransferase gene allows us to manipulate the formation of the rare Glcbeta1,3Fucalpha1 structure to investigate its biological function.  相似文献   

20.
A recent study showed that F-spondin, a protein associated with the extracellular matrix, interacted with amyloid precursor protein (APP) and inhibited beta-secretase cleavage. F-spondin contains a thrombospondin domain that we hypothesized could interact with the family of receptors for apolipoprotein E (apoE). Through coimmunoprecipitation experiments, we demonstrated that F-spondin interacts with an apoE receptor (apoE receptor 2 [ApoEr2]) through the thrombospondin domain of F-spondin and the ligand binding domain of ApoEr2. Full-length F-spondin increased coimmunoprecipitation of ApoEr2 and APP in transfected cells and primary neurons and increased surface expression of APP and ApoEr2. Full-length F-spondin, but none of the individual F-spondin domains, increased cleavage of APP and ApoEr2, resulting in more secreted forms of APP and ApoEr2 and more C-terminal fragments (CTF) of these proteins. In addition, full-length F-spondin, but not the individual domains, decreased production of the beta-CTF of APP and Abeta in transfected cells and primary neurons. The reduction in APP beta-CTF was blocked by receptor-associated protein (RAP), an inhibitor of lipoprotein receptors, implicating ApoEr2 in the altered proteolysis of APP. ApoEr2 coprecipitated with APP alpha- and beta-CTF, and F-spondin reduced the levels of APP intracellular domain signaling, suggesting that there are also intracellular interactions between APP and ApoEr2, perhaps involving adaptor proteins. These studies suggest that the extracellular matrix molecule F-spondin can cluster APP and ApoEr2 together on the cell surface and affect the processing of each, resulting in decreased production of Abeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号