首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

2.
Infection of mouse macrophages with Toxoplasma gondii elicits MAPK activation and IL-12 production, but host cell signaling pathways have not been clearly delineated. Here, we compared macrophage signaling in response to high virulence type I (RH) vs low virulence type II (ME49) strain infection. Tachyzoites of both strains induced p38 MAPK-dependent macrophage IL-12 release, although ME49 elicited 2- to 3-fold more cytokine than RH. IL-12 production was largely restricted to infected cells in each case. RH-induced IL-12 release did not require MyD88, whereas ME49-triggered IL-12 production was substantially dependent on this TLR/IL-1R adaptor molecule. MyD88 was also not required for RH-stimulated p38 MAPK activation, which occurred in the absence of detectable upstream p38 MAPK kinase activity. In contrast, ME49-driven p38 MAPK activation displayed an MyD88-dependent component. This parasite strain also induced MyD88-dependent activation of MKK4, an upstream activator of p38 MAPK. The results suggest that RH triggers MAPK activation and IL-12 production using MyD88-independent signaling, whereas ME49 uses these pathways as well as MyD88-dependent signaling cascades. Differences in host signaling pathways triggered by RH vs ME49 may contribute to the high and low virulence characteristics displayed by these parasite strains.  相似文献   

3.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

4.
The p38alpha MAPK participates in a variety of biological processes. Activation of p38alpha is mediated by phosphorylation on specific regulatory tyrosine and threonine sites, and the three dual kinases, MAPK kinase 3 (MKK3), MKK4, and MKK6, are known to be the upstream activators of p38alpha. In addition to activation by upstream kinases, p38alpha can autoactivate when interacting with transforming growth factor-beta-activated protein kinase 1-binding protein 1 (TAB1). Here we used MKK3 and MKK6 double knock-out (MKK3/6 DKO) and MKK4/7 DKO mouse embryonic fibroblast (MEF) cells to examine activation mechanisms of p38alpha. We confirmed that the MKK3/6 pathway is a primary mechanism for p38alpha phosphorylation in MEF cells, and we also showed the presence of other p38alpha activation pathways. We show that TAB1-mediated p38alpha phosphorylation in MEF cells did not need MKK3/4/6, and it accounted for a small portion of the total p38alpha phosphorylation that was induced by hyperosmolarity and anisomycin. We observed that a portion of peroxynitrite-induced phospho-p38alpha is associated with an approximately 85-kDa disulfide complex in wild-type MEF cells. Peroxynitrite-induced phosphorylation of p38alpha in the approximately 85-kDa complex is independent from MKK3/6 because only phospho-p38alpha not associated with the disulfide complex was diminished in MKK3/6 DKO cells. In addition, our data suggest interference among different pathways because TAB1 had an inhibitory effect on p38alpha phosphorylation in the peroxynitrite-induced approximately 85-kDa complex. Mutagenesis analysis of the cysteines in p38alpha revealed that no disulfide bond forms between p38alpha and other proteins in the approximately 85-kDa complex, suggesting it is a p38alpha binding partner(s) that forms disulfide bonds, which enable it to bind to p38alpha. Therefore, multiple mechanisms of p38alpha activation exist that can influence each other, be simultaneously activated by a given stimulus, and/or be selectively used by different stimuli in a cell type-specific manner.  相似文献   

5.
We show in this study that Toxoplasma gondii infection induces rapid activation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2, and stress-activated protein kinase/c-Jun N-terminal kinase MAPK, followed promptly by their deactivation in mouse macrophages. Nevertheless, when infected cells were subsequently subjected to LPS triggering, MAPK activation was severely defective, in particular in the case of p38 MAPK, which is required for LPS-triggered TNF-alpha and IL-12 production. Similar effects occurred during endotoxin tolerance, but the phenomena were distinct. LPS pretriggering failed to activate the major p38 MAPK kinase, MAPK kinase 3/6. Toxoplasma infection, in contrast, resulted in sustained activation of this kinase. Furthermore, endotoxin pre-exposure blocked IkappaBalpha degradation upon subsequent LPS triggering, but this was not the case for Toxoplasma preinfection. Endotoxin-mediated down-regulation of the LPS receptor, Toll-like receptor 4, has been suggested as one possible mechanism contributing to tolerance, and we found in this study that LPS down-modulated Toll-like receptor 4 expression. In contrast, Toxoplasma infection induced up-regulation of this pattern recognition receptor. Our results show that T. gondii blocks LPS-triggered cytokine production in part through MAPK inactivation, and that this occurs through pathways distinct from endotoxin-induced tolerance.  相似文献   

6.
7.
Recent evidence indicates activated mitogen-activated protein kinase (MAPK) p38 has a critical function in human cytomegalovirus (HCMV) viral DNA replication in infected human fibroblasts. To elucidate the mechanism of HCMV-mediated p38 activation, we have performed a detailed analysis of p38 activation and the kinases associated with this activation at different times postinfection. We demonstrate that p38 kinase activity is strongly increased following viral infection. Inhibition of this activity significantly inhibited HCMV-induced hyperphosphorylation of pRb and phosphorylation of heat shock protein 27, suggesting that p38 activation is involved in virus-mediated changes in host cell metabolism throughout the course of infection. We then provide evidence that p38 activation is mediated by different mechanisms at early times versus later times of infection. At early times of infection (8 to 14 h postinfection [hpi]), when p38 activation is first observed, no significant activation of the three kinases which can directly phosphorylate p38 (namely, MKK3, MKK6, and MKK4) is detected. Using vectors which express dominant negative proteins, we demonstrate that basal MKK6 kinase activity is necessary for HCMV-mediated p38 activation at these early times of infection (12 hpi). Then, we use ATP depletion to show that at 12 hpi, HCMV inhibits dephosphorylation of activated p38. These two experiments suggest that HCMV activates p38 by inhibition of dephosphorylation of p38. In contrast to early times of infection, at later times of infection (48 to 72 hpi), increased MKK3/6, but not MKK4, activity is observed. These results indicate that at early times of HCMV infection, increased steady-state levels of activated p38 is mediated at least in part by inhibition of dephosphorylation of p38, while at later times of infection p38 activation is due to increased activity of the upstream kinases MKK3 and MKK6. These findings indicate that HCMV has developed multiple mechanisms to ensure activation of the MAPK p38, a kinase critical to viral infection.  相似文献   

8.
Responses to transforming growth factor beta and multiple cytokines involve activation of transforming growth factor beta-activated kinase-1 (TAK1) kinase, which activates kinases IkappaB kinase (IKK) and MKK3/6, leading to the parallel activation of NF-kappaB and p38 MAPK. Activation of TAK1 by autophosphorylation is known to involve three different TAK1-binding proteins (TABs). Here we report a protein phosphatase subunit known as type 2A phosphatase-interacting protein (TIP) that also acts as a TAB because it co-precipitates with and directly binds to TAK1, enhances TAK1 autophosphorylation at unique sites, and promotes TAK1 phosphorylation of IKKbeta and signaling to NF-kappaB. Mass spectrometry demonstrated that co-expression of TAB4 protein significantly increased phosphorylation of four sites in TAK1, in a linker region between the kinase and TAB2/3 binding domains, and two sites in TAB1. Recombinant GST-TAB4 bound in an overlay assay directly to inactive TAK1 and activated TAK1 but not TAK1 phosphorylated in the linker sites, suggesting a bind and release mechanism. In kinase assays using TAK1 immune complexes, added GST-TAB4 selectively stimulated IKK phosphorylation. TAB4 co-precipitated polyubiquitinated proteins dependent on a Phe-Pro motif that was required to enhance phosphorylation of TAK1. TAB4 mutated at Phe-Pro dominantly interfered with IL-1beta activation of NF-kappaB involving IKK-dependent but not p38 MAPK-dependent signaling. The results show that TAB4 binds TAK1 and polyubiquitin chains to promote specific sites of phosphorylation in TAK1-TAB1, which activates IKK signaling to NF-kappaB.  相似文献   

9.
Stress-activated mitogen-activated protein (MAP) kinase p38 mediates stress signaling in mammalian cells via threonine and tyrosine phosphorylation in its conserved TGY motif by upstream MAP kinase kinases (MKKs). In addition, p38 MAP kinase can also be activated by an MKK-independent mechanism involving TAB-1 (TAK-1-binding protein)-mediated autophosphorylation. Although TAB-1-mediated p38 activation has been implicated in ischemic heart, the biological consequences and downstream signaling of TAB-1-mediated p38 activation in cardiomyocytes is largely unknown. We show here that TAB-1 expression leads to a significant induction of p38 autophosphorylation and consequent kinase activation in cultured neonatal cardiomyocytes. In contrast to MKK3-induced p38 kinase downstream effects, TAB-1-induced p38 kinase activation does not induce expression of pro-inflammatory genes, cardiac marker gene expression, or changes in cellular morphology. Rather, TAB-1 binds to p38 and prevents p38 nuclear localization. Furthermore, TAB-1 disrupts p38 interaction with MKK3 and redirects p38 localization in the cytosol. Consequently, TAB-1 expression antagonizes the downstream activity of p38 kinase induced by MKK3 and attenuates interleukin-1beta-induced inflammatory gene induction in cardiomyocytes. These data suggest that TAB-1 can mediate MKK-independent p38 kinase activation while negatively modulating MKK-dependent p38 function. Our study not only redefines the functional role of TAB-1 in p38 kinase-mediated signaling pathways but also provides the first evidence that intracellular localization of p38 kinase and complex interaction dictates its downstream effects. These results suggest a previously unknown mechanism for stress-MAP kinase regulation in mammalian cells.  相似文献   

10.
Maturation of dendritic cells (DCs) is critical for their ability to stimulate resting naive T cells in primary immune responses. Previous studies demonstrated that collagen, such as type I collagen, could facilitate DC maturation; however, the basis of collagen-mediated DC maturation remains unclear. Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor constitutively expressed in a variety of epithelial cells, including tumor cells, and is inducible in leukocytes. In this study, we evaluated the role of DDR1 in DC maturation using human monocyte-derived DCs. Two DDR1 isoforms, DDR1a and DDR1b, were expressed in both immature and mature DCs. Activation of DDR1 on immature DCs resulted in their partial maturation; however, DDR1 activation markedly amplified TNF-alpha- and LPS-induced phenotypic and functional maturation of DCs through activation of p38 mitogen-activated protein kinase (MAPK), suggesting the involvement of DDR1b in this process. Activation of DDR1b on differentiated DDR1b-overexpressing THP-1 cells or DDR1 on mature DCs induced the formation of TNFR associated factor 6 (TRAF6)/TGF-beta-activated kinase 1 binding protein 1beta/p38alpha MAPK complex and p38alpha autophosphorylation. Transfection of differentiated DDR1b-overexpressing THP-1 cells with dominant negative TRAF6 completely abrogated DDR1b-mediated p38 MAPK phosphorylation, indicating a critical role of TRAF6 in DDR1b-mediated p38 MAPK activation. Taken together, our data suggest that DDR1b-collagen interaction augments the maturation of DCs in a tissue microenvironment through a unique TRAF6/TGF-beta-activated kinase 1 binding protein 1beta/p38alpha MAPK signaling cascade and contributes to the development of adaptive immune responses.  相似文献   

11.
12.
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.  相似文献   

13.
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.  相似文献   

14.
15.
Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 and MKK3, activated p38 MAPK. Dominant negative forms of these were found to inhibit activation of p38 MAPK by IL-1. Dominant negative RasN17 blocked the effect of the active forms of all but MKK3 and MKK6, indicating that Ras lies downstream of TRAF-6 but upstream of MKK3 and MKK6 on the pathway. Furthermore, the activation of p38 MAPK caused by overexpressing active RasVHa could not be inhibited using dominant negative mutants of MyD88, IRAK, or IRAK-2, or TRAF6, but could be inhibited by dominant negative MKK3 or MKK6. In the same manner, the inhibitory effect of Rap on the activation of p38 by IL-1 occurred at a point downstream of MyD88, IRAK, and TRAF6, since the activation of p38 MAPK by these components was inhibited by overexpressing active Rap1AV12, while neither MKK3 nor MKK6 were affected. Active RasVHa associated with IRAK, IRAK2, and TRAF6, but not MyD88. In addition we found a role for TAK-1 in the activation of p38 MAPK by IL-1, with TAK-1 also associating with active Ras. Our study suggests that upon activation Ras becomes associated with IRAK, Traf-6, and TAK-1, possibly aiding the assembly of this multiprotein signaling complex required for p38 MAPK activation by IL-1.  相似文献   

16.
由牛副流感病毒3型(Bovine parainfluenza virus type 3,Bpiv3)感染引起的牛副流感病已成为各国牛场最重要的传染病之一,每年都会给世界养牛业造成巨大的经济损失,但关于该病致病的分子机制研究较少。本研究通过观察Bpiv3感染对MDBK细胞中丝裂原活化蛋白激酶(MKK3)及其下游分子p38丝裂酶原活化的蛋白激酶(p38MAPK)的表达的影响,探讨相关的信号转导机制,对p38 MAPK通路在Bpiv3感染过程中的作用进行了初步研究。Bpiv3感染细胞后,采用Western Blot检测MKK3,p38 MAPK在蛋白水平的表达变化,并采用ELISA法检测细胞上清中IL-6,IL-8,IL-13和TNF-α的水平变化,采用SPSS 12软件进行统计学分析。结果表明,Bpiv3在感染后能够诱导MKK3的激活以及p38的磷酸化,激活了p38 MAPK信号通路。而且p38 MAPK信号通路参与了Bpiv3的复制过程。ELISA检测Bpiv3感染后以及使用抑制剂SB202190处理后的细胞上清中IL-6、IL-8、IL-13和TNF-α的水平发现,p38 MAPK信号通路参与了Bpiv3诱导的炎症反应。研究证实Bpiv3感染能够激活p38 MAPK通路,显著上调MKK3的表达并诱导p38发生磷酸化,进一步激活下游分子发挥生物学活性,促进Bpiv3的复制及诱导促炎细胞因子的产生。p38 MAPK信号通路的激活可能是Bpiv3感染诱发炎症反应的机制之一。  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix (ECM) synthesis that leads to renal fibrosis. Intracellular signaling mechanisms involved in this process remain incompletely understood. Mitogen-activated protein kinase (MAPK) is a major stress signal-transducing pathway, and we have previously reported activation of p38 MAPK by TGF-beta1 in rat mesangial cells and its role in the stimulation of pro-alpha1(I) collagen. In this study, we further investigated the mechanism of p38 MAPK activation by TGF-beta1 and the role of MKK3, an upstream MAPK kinase of p38 MAPK, by examining the effect of targeted disruption of the Mkk3 gene. We first isolated glomerular mesangial cells from MKK3-null (Mkk3-/-) and wild-type (Mkk3+/+) control mice. Treatment with TGF-beta1 induced rapid phosphorylation of MKK3 as well as p38 MAPK within 15 min in cultured wild-type (Mkk3+/+) mouse mesangial cells. In contrast, TGF-beta1 failed to induce phosphorylation of either MKK3 or p38 MAPK in MKK3-deficient (Mkk3-/-) mouse mesangial cells, indicating that MKK3 is required for TGF-beta1-induced p38 MAPK activation. TGF-beta1 selectively activated the p38 MAPK isoforms p38alpha and p38delta in wild-type (Mkk3+/+) mesangial cells, but not in MKK3-deficient (Mkk3-/-) mesangial cells. Thus, activation of p38alpha and p38delta is dependent on the activation of upstream MKK3 by TGF-beta1. Furthermore, MKK3 deficiency resulted in a selective disruption of TGF-beta1-stimulated up-regulation of pro-alpha1(I) collagen expression but not TGF-beta1 induction of fibronectin and PAI-1. These data demonstrate that the MKK3 is a critical component of the TGF-beta1 signaling pathway, and its activation is required for subsequent p38alpha and p38delta MAPK activation and collagen stimulation by TGF-beta1.  相似文献   

18.
19.
All four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family (p38α, p38β, p38γ and p38δ) are activated by dual phosphorylation in the TGY motif in the activation loop. This phosphorylation is mediated by three kinases, MKK3, MKK6 and MKK4, at least in vitro. The role of these MKK in the activation of p38α has been demonstrated in studies using fibroblasts that lack MKK3 and/or MKK6. Nonetheless, the physiological upstream activators of the other p38MAPK isoforms have not yet been reported using MKK knockout cells. In this study, we examined p38β, γ and δ activation by MKK3 and MKK6, in cells lacking MKK3, MKK6 or both. We show that MKK3 and MKK6 are both essential for the activation of p38γ and p38β induced by environmental stress, whereas MKK6 is the major p38γ activator in response to TNFα. In contrast, p38δ activation by ultraviolet radiation, hyperosmotic shock, anisomycin or by TNFα is mediated by MKK3. Moreover, in response to osmotic stress, MKK3 and MKK6 are crucial in regulating the phosphorylation of the p38γ substrate hDlg and its activity as scaffold protein. These data indicate that activation of distinct p38MAPK isoforms is regulated by the selective and synchronized action of two kinases, MKK3 and MKK6, in response to cell stress.  相似文献   

20.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1beta. IL-1beta induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1beta for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1beta. IL-1beta primed neutrophils for enhanced release of superoxide (O(2)(-)) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1beta also induced O(2)(-) release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1beta and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1beta induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1beta and activation of this cascade mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号