首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the role of Toll‐like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF‐κB‐α) and mitogen‐activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin‐6, chemokine (C‐X‐C motif) ligand 1 (CXCL1) and chemokine (C‐C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2‐deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF‐κB‐α and c‐Jun N‐terminal kinase mitogen‐activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2‐deficient cells,. Inhibitor assay revealed that NF‐κB and MAPKs are essential for B. fragilis‐induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.  相似文献   

2.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

3.
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.  相似文献   

4.
5.
6.
7.
Mindin has a broad spectrum of roles in the innate immune system, including in macrophage migration, antigen phagocytosis and cytokine production. Mindin functions as a pattern‐recognition molecule for microbial pathogens. However, the underlying mechanisms of mindin‐mediated phagocytosis and its exact membrane receptors are not well established. Herein, we generated mindin‐deficient mice using the CRISPR‐Cas9 system and show that peritoneal macrophages from mindin‐deficient mice were severely defective in their ability to phagocytize E  coli. Phagocytosis was enhanced when E  coli or fluorescent particles were pre‐incubated with mindin, indicating that mindin binds directly to bacteria or non‐pathogen particles and promotes phagocytosis. We defined that 131I‐labelled mindin binds with integrin Mac‐1 (CD11b/CD18), the F‐spondin (FS)‐fragment of mindin binds with the αM‐I domain of Mac‐1 and that mindin serves as a novel ligand of Mac‐1. Blockade of the αM‐I domain of Mac‐1 using either a neutralizing antibody or si‐Mac‐1 efficiently blocked mindin‐induced phagocytosis. Furthermore, mindin activated the Syk and MAPK signalling pathways and promoted NF‐κB entry into the nucleus. Our data indicate that mindin binds with the integrin Mac‐1 to promote macrophage phagocytosis through Syk activation and NF‐κB p65 translocation, suggesting that the mindin/Mac‐1 axis plays a critical role during innate immune responses.  相似文献   

8.
Macrophages play a major role in innate immune responses by producing a variety of immune mediators and cytokines. The stimulation of macrophages by natural products may lead to an enhanced innate immune system. This study evaluated the immunostimulatory effects of a polysaccharide-rich crude fraction of Celosia cristata L. flowers (CCP) on murine macrophages. CCP treatment induced the production of inducible nitric oxide synthase, cyclooxygenase-2, and cytokines by macrophages. Mechanistically, the activation of mitogen-activated protein kinases, NF-κB and toll-like receptor 4 were found to be associated with the stimulatory functions of CCP. CCP was found to be primarily composed of galacturonic acid and glucose in addition to small amounts of arabinose and galactose. This study demonstrated that CCP may enhance the innate immune responses and potentially improve the immune functions in the body.  相似文献   

9.
10.
11.
Bacterial pathogens often subvert the innate immune system to establish a successful infection. The direct inhibition of downstream components of innate immune pathways is particularly well documented but how bacteria interfere with receptor proximal events is far less well understood. Here, we describe a Toll/interleukin 1 receptor (TIR) domain‐containing protein (PumA) of the multi‐drug resistant Pseudomonas aeruginosa PA7 strain. We found that PumA is essential for virulence and inhibits NF‐κB, a property transferable to non‐PumA strain PA14, suggesting no additional factors are needed for PumA function. The TIR domain is able to interact with the Toll‐like receptor (TLR) adaptors TIRAP and MyD88, as well as the ubiquitin‐associated protein 1 (UBAP1), a component of the endosomal‐sorting complex required for transport I (ESCRT‐I). These interactions are not spatially exclusive as we show UBAP1 can associate with MyD88, enhancing its plasma membrane localization. Combined targeting of UBAP1 and TLR adaptors by PumA impedes both cytokine and TLR receptor signalling, highlighting a novel strategy for innate immune evasion.  相似文献   

12.
13.
14.
15.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
We previously reported that mechanical vibration‐induced proinflammatory cytokines, interleukin‐6 (IL‐6) and IL‐8, expression in human periodontal ligament (hPDL) cells, however, the underlying mechanism remained unclear. Mechanical stimuli are able to activate cellular responses by inducing the activation of several signaling pathways including cytoskeletal changes and inflammation. The actin cytoskeleton is a highly dynamic network and plays many important roles in intracellular events. Here, we aimed to investigate the involvement of a pivotal mediator of inflammatory responses, nuclear factor‐κB (NF‐κB), and actin polymerization in vibration‐induced upregulation of IL‐6 and IL‐8 expression in hPDL cells. hPDL cells were pretreated with the NF‐κB inhibitor BAY 11‐7082 or cytochalasin D, respectively, before exposure to vibration. IL‐6 and IL‐8 messenger RNA (mRNA) and protein expression were quantified by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assays, respectively. Subcellular localization of the NF‐κB p65 subunit was visualized by immunofluorescent staining. We found an increase in NF‐κB nuclear translocation in vibrated cells compared with control cells. Pretreatment with BAY 11‐7082 significantly inhibited vibration‐induced IL‐6 and IL‐8 mRNA and protein expression in hPDL cells. Moreover, pretreatment with cytochalasin D inhibited NF‐κB nuclear translocation and attenuated upregulation of IL‐6 and IL‐8 mRNA and protein in vibrated cells. Therefore, modulation of actin cytoskeletal polymerization in response to vibration may activate the NF‐κB signaling pathway and subsequently upregulate IL‐6 and IL‐8 expression in hPDL cells.  相似文献   

18.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号